Inorg. Chem. 2010, 49, 9119–9121 9119
DOI: 10.1021/ic101795s
An Alternate Route to Disulfanido Complexes by Nucleophilic Attack
of Thiolates on Ruthenium-Bound Thiosulfonato Ligands
Erwan Galardon,*,† Patrick Deschamps,‡ Alain Tomas,‡ Pascal Roussel,§ and Isabelle Artaud*,†
†
ꢀ
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris
‡
ꢁ
Descartes, 45 rue des Saints Peres, 75270 Paris Cedex 06, France, Laboratoire de Cristallographie et RMN
ꢀ
Biologiques, UMR 8015 CNRS, Universite Paris Descartes, 4 avenue de l’Observatoire, 75270 Paris Cedex 06,
§
ꢀ
ꢀ
ꢀ
France, and Unite de Catalyse et Chimie du Solide (UCCS), UMR 8012 CNRS, Ecole Nationale Superieure de
Chimie de Lille, BP 90108, 59652 Villeneuve d’Ascq Cedex, France
Received September 2, 2010
The reaction of the thiosulfonato complexes [(p-cym)Ru(bipy)(S-
SO2R)]þ (R = Ph, p-Tol) with the thiolates R0S- (R0 = alkyl or aryl)
leads to S-S bond cleavage and to the quantitative formation of the
corresponding disulfanido derivatives [(p-cym)Ru(bipy)(S-SR0)]þ.
The aryldisulfanido complexes also react with benzyl thiolate by
S-S bond cleavage to give [(p-cym)Ru(bipy)(SSCH2Ph)]þ.
nucleophilicity of sulfur ligands like hydrogen (sulfido)3 (HS-)
or disulfido4 (S22-) and their subsequent reaction with electro-
philic sulfur or carbon centers, respectively. Herein, we propose
an alternate route toward disulfanido complexes, resulting
from the nucleophilic attack of a thiolate on a metal-bound
thiosulfonate moiety. Interestingly, the thiolate does not react
at the metal center by ligand exchange but selectively on the
thiosulfonate ligand itself, leading to cleavage of the S-S(O)2
bond and to the formation of a new S-S bond.
The new complexes [(p-cym)Ru(bipy)(S-SO2(p-Tol)]þ (1a)
and [(p-cym)Ru(bipy)(S-SO2(Ph)]þ (1b) were synthesized
and isolated as their PF6 salts by first reacting the complex
[(p-cym)Ru(bipy)(Cl)](PF6) with AgNO3 in methanol, fol-
lowed by the addition of the thiosulfonate salt p-TolSO2SK
or PhSO2SNa. Thiosulfonato complexes of ruthenium, based
on the Cp ligand, have already been reported, but they were
obtained either by oxygen transfer from the thiosulfinato
derivatives CpRu(PPh3)(CO)(SS(O)R)5 or by reaction be-
tween the hydrogen (sulfido) compounds CpRu(dppe)(SH)
or CpRu(dppm)(SH) and sulfonyl chlorides.6 The X-ray
The recent report of crystal structures that reveal persulfides
directly ligated to a transition-metal center in biological
systems1 has opened a new field of investigation for coordina-
tion chemists. To provide a rational synthesis of disulfanido
complexes and to study their chemical reactivity, however, still
remain challenges. With three potential reactive centers,
namely, the metal cation and the two sulfurs of the S-S bond,
these species are indeed highly reactive. We have recently
reported the first direct synthesis of alkyldisulfanido complexes
by the simple reaction between a hydroxo zinc complex and a
synthetic persulfide.2 However, this strategy requires a stable
persulfide and is therefore limited to bulky and electron-rich
derivatives. It also absolutely requires the presence of a base in
the metal coordination sphere of the starting complex, to avoid
the known degradation of hydrodisulfides in a basic solu-
tion. Other rational strategies found in the literature use the
crystal structure of 1b PF6 is displayed in Figure 1, and it
3
shows bond lengths and angles in the range observed in
related derivatives of ruthenium5,6 or other metals.7
Upon the addition of a methanolic solution of sodium benzyl
thiolate to a solution of 1a or 1b in methanol or dimethyl
sulfoxide (DMSO), the color of the mixture immediately
turned from yellow to orange. Careful analysis of the 1H NMR
spectrum of the crude reaction mixture (Figure 2) of 1a
*To whom correspondence should be addressed. E-mail: erwan.galardon@
parisdescartes.fr (E.G.), isabelle.artaud@parisdescartes.fr (I.A.).
(1) (a) Arendsen, A. F.; Hadden, J.; Card, G.; McAlpine, A. S.; Bailey, S.;
Zaitsev, V.; Duke, E. H. M.; Lindley, P. F.; Krockel, M.; Trautwein, A. X.;
Feiters, M. C.; Charnock, J. M.; Garner, C. D.; Marritt, S. J.; Thomson, A. J.;
Kooter, I. M.;Johnson, M. K.;VanDenBerg, W. A. M.;VanDongen, W. M. A.
M.; Hagen, W. R. J. Inorg. Biochem. 1998, 3(1), 81–95. (b) Bamford, V. A.; Bruno,
S.; Rasmussen, T.; Appia-Ayme, C.; Cheesman, M. R.; Berks, B. C.; Hemmings, A. M.
EMBO J. 2002, 21(21), 5599–5610. (c) Aragao, D.; Macedo, S.; Mitchell, E. P.;
Romao, C. V.; Liu, M. Y.; Frazao, C.; Saraiva, L. M.; Xavier, A. V.; LeGall, J.; van
Dongen, W. M. A. M.; Hagen, W. R.; Teixeira, M.; Carrondo, M. A.; Lindley, P.
J. Inorg. Biochem. 2003, 8(5), 540–548. (d) Kim, E. J.; Feng, J.; Bramlett, M. R.;
Lindahl, P. A. Biochemistry 2004, 43(19), 5728–5734.
(3) (a) Shaver, A.; Hartgerink, J.; Lai, R. D.; Bird, P.; Ansari, N.
Organometallics 1983, 2(7), 938–40. (b) Shaver, A.; Hartgerink, J. Can. J.
Chem. 1987, 65(6), 1190–1194. (c) Shaver, A.; Plouffe, P.-Y. Inorg. Chem. 1994,
33(19), 4327–4333.
(4) Lobana, T. S.; Isobe, K.; Kitayama, H.; Nishioka, T.; Doe, M.;
Kinoshita, I. Organometallics 2004, 23(22), 5347–5352.
(5) Shaver, A.; Plouffe, P. Y. J. Am. Chem. Soc. 1991, 113(20), 7780–7782.
(6) El-Khateeb, M.; Wolfsberger, B.; Schenk, W. A. J. Organomet. Chem.
2000, 612(1-2), 14–17.
(7) (a) El-khateeb, M.; Shaver, A.; Lebuis, A. M. J. Organomet. Chem.
2001, 622(1-2), 293–296. (b) El-khateeb, M.; Gorls, H.; Weigand, W.
J. Organomet. Chem. 2006, 691(26), 5804–5808. (c) Fischmann, A. J.; Forsyth,
C. M.; Spiccia, L. Inorg. Chem. 2008, 47(22), 10565–10574.
(2) Galardon, E.; Tomas, A.; Selkti, M.; Roussel, P.; Artaud, I. Inorg.
Chem. 2009, 48(13), 5921–5927.
r
2010 American Chemical Society
Published on Web 09/23/2010
pubs.acs.org/IC