not bind fluoride. Finally, addition of an aqueous solution of Al3+
to a solution containing 1-F leads to complete regeneration of [1]+
within a few minutes. This result shows that fluoride binding by
[1]+ is readily reversible.
S.-J. Ou, C.-Y. Duan, B.-G. Zhang and Z.-P. Bai, Chem. Commun.,
2006, 624–626.
2 C. Bresner, J. K. Day, N. D. Coombs, I. A. Fallis, S. Aldridge, S. J. Coles
and M. B. Hursthouse, Dalton Trans., 2006, 3660–3667; C. Bresner,
S. Aldridge, I. A. Fallis, C. Jones and L.-L. Ooi, Angew. Chem., Int. Ed.,
2005, 44, 3606–3609; C. Dusemund, K. R. A. S. Sandanayake and
S. Shinkai, J. Chem. Soc., Chem. Commun., 1995, 333–334;
H. Yamamoto, A. Ori, K. Ueda, C. Dusemund and S. Shinkai,
Chem. Commun., 1996, 407–408; C. R. Cooper, N. Spencer and
T. D. James, Chem. Commun., 1998, 1365–1366; S. Arimori,
M. G. Davidson, T. M. Fyles, T. G. Hibbert, T. D. James and
G. I. Kociok-Koehn, Chem. Commun., 2004, 1640–1641; R. Badugu,
J. R. Lakowicz and C. D. Geddes, Curr. Anal. Chem., 2005, 1, 157–170;
R. Badugu, J. R. Lakowicz and C. D. Geddes, Sens. Actuators, B, 2005,
104, 103–110; N. DiCesare and J. R. Lakowicz, Anal. Biochem., 2002,
301, 111–116.
In summary, we report an unprecedented boron-based fluoride
receptor ([1]+) which operates in largely aqueous solutions. This
receptor is selective for fluoride and gives rise to a fluorescent
ratiometric response in the presence of the analyte. The ability of
this cationic receptor to overcome the high hydration enthalpy of
fluoride can be correlated to favorable Coulombic effects which
enhance the Lewis acidity of the boron center. We are currently
investigating the use of such receptors for the binding of cyanide
which has been shown to interact with triarylboranes.3e
3 (a) X. Y. Liu, D. R. Bai and S. Wang, Angew. Chem., Int. Ed., 2006, 45,
5475–5478; (b) S. Yamaguchi, T. Shirasaka, S. Akiyama and K. Tamao,
J. Am. Chem. Soc., 2002, 124, 8816–8817; (c) Z.-Q. Liu, Q. Fang,
D.-X. Cao, D. Wang and G.-B. Xu, Org. Lett., 2004, 6, 2933–2936; (d)
M. Miyata and Y. Chujo, Polym. J. (Tokyo), 2002, 34, 967–969; (e)
K. Parab, K. Venkatasubbaiah and F. Ja¨kle, J. Am. Chem. Soc., 2006,
127, 13748–13749.
4 S. Yamaguchi, S. Akiyama and K. Tamao, J. Am. Chem. Soc., 2001,
123, 11372–11375.
5 S. Yamaguchi, S. Akiyama and K. Tamao, J. Am. Chem. Soc., 2000,
122, 6335–6336.
6 For water compatible aluminum and tin-based fluoride sensors
immobilized in membranes, see: I. H. A. Badr and M. E. Meyerhoff,
J. Am. Chem. Soc., 2005, 127, 5318–5319; N. Chaniotakis, K. Jurkschat,
D. Mueller, K. Perdikaki and G. Reeske, Eur. J. Inorg. Chem., 2004,
2283–2288.
7 H. E. Katz, J. Org. Chem., 1985, 50, 5027–5032; P. A. Chase,
L. D. Henderson, W. E. Piers, M. Parvez, W. Clegg and M. R. J.
Elsegood, Organometallics, 2006, 25, 349–357; M. Mela¨ımi and
F. P. Gabba¨ı, Adv. Organomet. Chem., 2005, 53, 61–99.
8 V. C. Williams, W. E. Piers, W. Clegg, M. R. J. Elsegood,
S. Collins and T. B. Marder, J. Am. Chem. Soc., 1999, 121,
3244–3245.
9 S. Sole´ and F. P. Gabba¨ı, Chem. Commun., 2004, 1284–1285.
10 M. Mela¨ımi and F. P. Gabba¨ı, J. Am. Chem. Soc., 2005, 127,
9680–9681.
11 C.-W. Chiu and F. P. Gabba¨ı, J. Am. Chem. Soc., 2006, 128,
14248–14249.
We gratefully acknowledge the following agencies for funding:
the Korea Research Foundation Grant (KRF-2005-214-C00211),
the U. S. Army Medical Research Institute of Chemical Defense,
the Welch Foundation (Grant A-1423), the PRF (Grant 44832-
AC4), the 21st Century Center of Excellence Program for
Frontiers in Fundamental Chemistry, the Scientific Research (S)
from the Ministry of Education, Culture, Sports, Science and
Technology of Japan and the Japan Society of the Promotion of
Science for Young Scientists (research fellowship).
Notes and references
{ [1]I: MeI (0.15 mL) was added to a solution of 1-dimesitylboryl-4-
diphenylphosphinobenzene (400 mg, 0.78 mmol) in Et2O (20 mL) at room
temperature. The mixture was stirred overnight and the solid formed was
collected by filtration. After washing with Et2O (10 mL), drying in vacuo
afforded [1]I as a yellow solid (350 mg, 69% yield) (Found: C, 67.54; H,
6.13. C37H39BIP requires C, 68.12; H, 6.03%).
1-F: [1]I (100 mg, 0.15 mmol) and TASF (42 mg, 0.15 mmol) were mixed
in THF (20 mL) at room temperature. After stirring for 30 min, the
mixture was filtered. The filtrate was exposed to a vacuum to afford a white
solid. This solid was washed with Et2O and dried under vacuum yielding
1-F (78 mg, 96% crude yield). Colorless single crystals of 1-F?CHCl3 could
be obtained in a 50–60% yield (not optimized) by partial evaporation of a
CHCl3 solution of 1-F (Found: C, 68.56; H, 6.07. C38H40BCl3FP requires
C, 68.75; H, 6.07%.).
12 T. Agou, J. Kobayashi and T. Kawashima, Inorg. Chem., 2006, 45,
9137–9144.
13 Z. Yuan, N. J. Taylor, Y. Sun, T. B. Marder, I. D. Williams and
L.-T. Cheng, J. Organomet. Chem., 1993, 449, 27–37.
14 T. Agou, J. Kobayashi and T. Kawashima, Org. Lett., 2005, 7,
4373–4376.
15 Related fluorinated phosphonium boranes have been recently reported:
G. C. Welch, R. R. S. Juan, J. D. Masuda and D. W. Stephan, Science,
2006, 314, 1124–1126.
¯
§ Crystal data for 1-F: C38H40BCl3FP, Mr = 663.83, triclinic, P1, a =
˚
12.2069(11), b = 12.6236(12), c = 13.1483(12) A, a = 71.916(2), b =
3
˚
76.183(2), c = 62.797(2)u, V = 1701.7(3) A , Z = 2, T = 110(2) K, m(Mo-
Ka) = 0.348 mm21, 10398 reflections collected, 7517 unique (Rint = 0.0697),
R1 = 0.0660 [I . 2s(I)], wR2 = 0.1630 (all data). CCDC 627715. For
crystallographic data in CIF or other electronic format see DOI: 10.1039/
b616814k.
1 M. Boiocchi, L. Del Boca, D. E. Gomez, L. Fabbrizzi, M. Licchelli and
E. Monzani, J. Am. Chem. Soc., 2004, 126, 16507–16514; Z.-H. Lin,
16 J. C. Doty, B. Babb, P. J. Grisdale, M. Glogowski and J. L. R. Williams,
J. Organomet. Chem., 1972, 38, 229–236.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 1133–1135 | 1135