C O M M U N I C A T I O N S
Scheme 1. Reductive Coupling under an Atmosphere of
Deuterium
GM069445) for partial support of this research. Umicore is
acknowledged for the donation of [Ir(cod)2]BARF.
Supporting Information Available: Experimental procedures and
spectral data (1H NMR, 13C NMR, IR, HRMS) for all new compounds,
2
including H NMR spectra of deuterio-2b. This material is available
References
(1) For use of catalytic hydrogenation in the large-scale production of
pharmaceutical agents, see: (a) Farina, V.; Reeves, J. T.; Senanayake, C.
H.; Song, J. J. Chem. ReV. 2006, 106, 2734. (b) Ja¨kel, C.; Paciello, R.
Chem. ReV. 2006, 106, 2734. (c) Asymmetric Catalysis on Industrial Scale;
Blaser, H. U., Schmidt, E., Eds.; Wiley-VCH: Weinheim, Germany, 2004.
(d) Heterogeneous Catalysis and Fine Chemicals IV; Blaser, H. U., Baiker,
A., Prins, R., Eds.; Elsevier: Amsterdam, 1997.
Table 2. Regioselective Hydrogenative Coupling of Nonsymmetric
Alkynes to Imines 6a, 12a, and 13aa
(2) It is estimated that asymmetric hydrogenation accounts for over half the
chiral compounds made by man not produced via physical or enzymatic
resolution: (a) Thommen, M. Spec. Chem. Mag. 2005, 25, 26. (b) Thayer,
A. M. C&E News 2005, 83 (36), 40. (c) Jakel, C.; Paciello, R. Chem.
ReV. 2006, 106, 2912.
(3) (a) Fischer, F.; Tropsch, H. Brennstoff Chem. 1923, 4, 276. (b) Fischer,
F.; Tropsch, H. Chem. Ber. 1923, 56B, 2428. (c) Jacoby, M. C&E News
2006, 84 (23), 57.
(4) (a) Roelen, O. German Patent DE 849,548, 1938. (b) Frohning, C. D.;
Kohlpaintner, C. W. In Applied Homogeneous Catalysis with Organo-
metallic Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH: Wein-
heim, Germany, 1996; Vol. 1, p 29. (c) van Leeuwen, P. W. N. M.
Homogeneous Catalysis, Understanding the Art; Kluwer: Dordrecht, The
Netherlands, 2004.
(5) For a recent review of hydrogen-mediated C-C coupling, see: Ngai, M.
a Standard conditions described in Table 1. Couplings to form 16b, 17b,
and 18b were conducted at 80 °C. Cited yields are of isolated material.
Y.; Krische, M. J. J. Org. Chem. 2007, 72, 1063.
(6) Prior to our work, two isolated reports of hydrogen-mediated C-C bond
formation beyond carbon monoxide coupling were reported: (a) Molander,
G. A.; Hoberg, J. O J. Am. Chem. Soc. 1992, 114, 3123. (b) Kokubo, K.;
Miura, M.; Nomura, M. Organometallics 1995, 14, 4521.
(7) (a) Kong, J. R.; Cho, C. W.; Krische, M. J. J. Am. Chem. Soc. 2005, 127,
11269. (b) Skucas, E.; Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc.
2007, 129, 7242. (c) Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am.
Chem. Soc. 2007, 129, 280.
(8) For reviews of iridium-catalyzed hydrogenation, see: (a) Pfaltz, A.;
Blankenstein, J.; Hilgraf, R.; Ho¨rmann, E.; McIntynre, S.; Menges, F.;
Scho¨nleber, M.; Smidt, S. P.; Wustenberg, B.; Zimmerman, N. AdV. Synth.
Catal. 2003, 345, 33. (b) Cui, X.; Burgess, K. Chem. ReV. 2005, 105,
3272. (c) Kaellstroem, K.; Munslow, I.; Andresson, P. G. Chem.sEur. J.
2006, 12, 3194.
furnish adducts 16b, 17b, and 18b in 10:1 regiochemical ratios for
each case. Interestingly, coupling proximal to the more highly
substituted alkyne terminus is observed, and regioselectivity was
found to improve with increasing reaction temperature. Regioiso-
meric ratios (rr) were determined by 1H NMR analysis of the crude
reaction product (Table 2). For certain examples cited in Tables 1
and 2, unreacted starting material and competitive imine reduction
are observed. Aryl-substituted alkynes, such as 1-phenylpropyne,
do not couple efficiently under standard conditions due to competi-
tive imine reduction. Deprotection of the sulfonamide moiety occurs
readily under standard conditions, as demonstrated by the conver-
sion of 9b to the corresponding Cbz-protected allylic amine 9c
(eq 1).
(9) π-Backbonding in the metal-alkyne complex, as described by the Dewar-
Chatt-Duncanson model, may facilitate alkyne-CdX (X ) O, NR)
oxidative coupling by conferring nucleophilic character to the bound
alkyne. Due to relativistic effects, iridium is a stronger π-donor than
rhodium: (Ph3P)2M(Cl)(CO), M ) Ir, νco ) 1965 cm-1; M ) Rh, νco
)
1980 cm-1 (Vaska, L.; Peone, J. Chem. Commun. 1971, 419). This may
account for the ability of iridium-based catalysts to activate nonconjugated
alkynes, which embody higher lying LUMOs.
(10) Ni-catalyzed alkyne, imine, triethylborane three-component coupling has
been reported, wherein vinylation is accompanied by ethyl transfer: Patel,
S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2004, 42, 1364.
(11) For preparation of allylic alcohols via direct Ni-catalyzed alkyne-aldehyde
reductive coupling, see: (a) Oblinger, E.; Montgomery, J. J. Am. Chem.
Soc. 1997, 119, 9065. (b) Huang, W.-S.; Chan, J.; Jamison, T. F. Org.
Lett. 2000, 2, 4221. (c) Mahandru, G. M.; Liu, G.; Montgomery, J. J.
Am. Chem. Soc. 2004, 126, 3698.
(12) The catalyzed addition of vinylzirconocenes to imines has been de-
scribed: (a) Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett.
2003, 44, 923. (b) Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2003, 125, 761.
(13) For reviews encompassing catalytic enantioselective aldehyde vinylations
employing vinylzirconocenes, see: (a) Wipf, P.; Kendall, C. Chem.s
Eur. J. 2002, 8, 1778. (b) Wipf, P.; Nunes, R. L. Tetrahedron 2004, 60,
1269. (c) For a seminal contribution in corresponding ketone vinylations,
see: Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538.
(14) For reviews encompassing the synthesis of allylic amines, see: (a) Cheik,
R. B.; Chaabouni, R.; Laurent, A.; Mison, P.; Nafti, A. Synthesis 1983,
685. (b) Laurent, A.; Mison, P.; Nafti, A.; Cheik, R. B.; Chaabouni, R. J.
Chem. Res. (S) 1984, 354. (c) Johannsen, M.; Jorgensen, K. A. Chem.
ReV. 1998, 98, 1689. (d) Overman, L. E.; Carpenter, N. E. Org. React.
2005, 66, 1.
(15) For reviews encompassing the preparation of optically enriched allylic
amines via enantioselective iridium-catalyzed allylic alkylation, see: (a)
Miyabe, H.; Takemoto, Y. Synlett 2005, 1641. (b) Takeuchi, R.; Kezuka,
S. Synthesis 2006, 3349. (c) For a seminal contribution, see: Hartwig, J.
F.; Ohmura, T. J. Am. Chem. Soc. 2002, 124, 15164.
To corroborate the proposed catalytic mechanism, the reductive
coupling of 2-butyne to imine 2a was conducted under an
atmosphere of deuterium. As revealed by 2H NMR analysis,
deuterio-2b incorporates deuterium at the vinylic position (83%
2H). Small quantities of deuterium also are incorporated at the allylic
methyl groups (5% 2H). The equal distribution of deuterium at the
allylic methyl groups suggests H-D exchange at the propargylic
positions of 2-butyne in advance of C-C coupling. As previously
observed in iridium-catalyzed couplings of 2-butyne to R-ketoesters,7c
excess Brønsted acid cocatalyst does not influence the extent of
deuterium incorporation (Scheme 1).
In summary, allylic amines are formed upon hydrogenation of
1,2-dialkyl-substituted alkynes in the presence of N-arylsulfonyl
aldimines. Our collective studies reveal that organometallics arising
transiently under hydrogenation conditions may be coupled to
conventional electrophiles, thus circumventing use of preformed
organometallic reagents as nonstabilized carbanion equivalents in
certain carbonyl and imine addition processes.
(16) For recent reviews encompassing catalytic enantioselective addition of
nonstabilized carbanions to imines, see: (a) Vilaivan, T.; Bhanthumnavin,
W.; Sritana-Anant, Y. Curr. Org. Chem. 2005, 9, 1315. (b) Friestad, G.
K.; Mathies, A. K. Tetrahedron 2007, 63, 2541.
(17) Musashi, Y.; Sakaki, S. J. Am. Chem. Soc. 2002, 124, 7588.
Acknowledgment. We thank Johnson & Johnson, Merck, the
Robert A. Welch Foundation, and the NIH-NIGMS (RO1-
JA073018J
9
J. AM. CHEM. SOC. VOL. 129, NO. 27, 2007 8433