Transition in Transition Metal Compounds, Top. Curr. Chem., 2004, 233,
1; (c) E. Ko¨nig, Prog. Inorg. Chem., 1987, 35, 527; (d) E. Ko¨nig, Struct.
Bonding, 1991, 76, 51; (e) H. A. Goodwin, Y. Garcia and P. Gu¨tlich,
Chem. Soc. Rev., 2000, 29, 419; (f) J. A. Real, A. B. Gaspar, V. Niel and
M. C. Mun˜oz, Coord. Chem. Rev., 2003, 236, 121; (g) J. A. Real,
A. B. Gaspar, V. Niel and M. C. Mun˜oz, Coord. Chem. Rev., 2003, 236,
121; (h) M. A. Halcrow, Coord. Chem. Rev., 2005, 249, 2880.
2 (a) N. Bre´fuel, S. Shova, J. Lipkowski and J.-P. Tuchagues, Chem.
Mater., 2006, 18, 5467–5479; (b) T. Fujigaya, D. Jiang and T. Aida,
J. Am. Chem. Soc., 2003, 125, 14690–14691; (c) V. Niel, J. M. Martinez-
Agudo, M. C. Mun˜oz, A. B. Gaspar and J. A. Real, Inorg. Chem., 2001,
40, 3838; (d) O. Roubeau, J. G. Haasnoot, E. Codjovi, F. Varret and
J. Reedijk, Chem. Mater., 2002, 14, 2559–2566; (e) C. Rajadurai,
F. Schramm, S. Brink, O. Fuhr, R. Kruk, M. Ghafari and M. Ruben,
Inorg. Chem., 2006, 45, 10019–10021; (f) K. S. Min, A. DiPasquale,
A. L. Rheingold and J. S. Miller, Inorg. Chem., 2007, 46,
1048–1050.
3 (a) T. Kitazawa, Y. Gomi, M. Takahashi, M. Takeda, A. Enomoto,
T. Miyazaki and T. Enoki, J. Mater. Chem., 1996, 6, 119; (b) V. Niel,
A. L. Thompson, M. C. Mun˜oz, A. Galet, A. E. Goeta and J. A. Real,
Angew. Chem., Int. Ed., 2003, 42, 3760; (c) J. A. Real, E. Andre´s,
M. C. Mun˜oz, M. Julve, T. Granier, A. Bousseksou and F. Varret,
Science, 1995, 268, 265; (d) N. Moliner, M. C. Mun˜oz, S. Le´tard,
X. Solans, N. Mene´ndez, A. Goujon, F. Varret and J. A. Real, Inorg.
Chem., 2000, 39, 5390; (e) S. Cobo, M. Ga´bor, J. A. Real and
A. Bousseksou, Angew. Chem., Int. Ed., 2006, 45, 5786–5789; (f) V. Niel,
M. C. Mun˜oz, A. B. Gaspar, A. Galet, G. Levchenko and J. A. Real,
Chem.–Eur. J., 2002, 8, 2446; (g) G. J. Halder, C. Kepert, B. Moubaraki,
K. S. Murray and J. D. Cashion, Science, 2002, 298, 1762.
4 (a) J. M. Holland, J. A. McAllister, Z. Lu, C. A. Kilner, M. Thornton-
Pett and M. A. Halcrow, Chem. Commun., 2001, 577–578; (b)
C. Carbonera, J. S. Costa, V. A. Money, J. Elha¨ık, J. A. K. Howard,
M. A. Halcrow and J. F. Le´tard, Dalton Trans., 2006, 3058; (c)
R. Pritchard, C. A. Kilner and M. A. Halcrow, Chem. Commun., 2007,
577–579.
5 (a) M. Ruben, F. J. Rojo, J. Romero-Salguero and J.-M. Lehn, Angew.
Chem., Int. Ed., 2004, 43, 3644–3662; (b) M. Ruben, U. Ziener, J.-M.
Lehn, V. Ksenofontov, P. Gu¨tlich and G. B. M. Vaughan, Chem.–Eur.
J., 2005, 11, 94–100; (c) M. Ruben, E. Breuning, J.-M. Lehn,
V. Ksenofontov, F. Renz, P. Gu¨tlich and G. B. M. Vaughan, Chem.–
Eur. J., 2003, 9, 4422–4429; (d) E. Breuning, M. Ruben, J.-M. Lehn,
F. Renz, Y. Garcia, V. Ksenofontov, P. Gu¨tlich, E. Wegelius and
K. Rissanen, Angew. Chem., Int. Ed., 2000, 39, 2504–2507.
above room temperature ST characteristics of 1 at the single
molecule level are in progress.9
The authors thank the Deutsche Forschungsgemeinschaft
(DFG) for financial support within the frame of the project
‘‘Kondo Molecules’’. We sincerely thank Dr Oliver Hampe for
FT-ICR mass analysis.
Notes and references
{ 49,49--(1,4-Phenylene)bis(1,29:69,10-bispyrazolylpyridine) (L): A solution
of 1,4-dioxane (50 ml) containing 2 M Na2CO3 (5 ml) was taken in a clean
250 mL flask and N2 gas was bubbled into the solution for 10 min. To this
solution 4-iodo-2,6-di-pyrazol-1-ylpyridine (0.674 g, 2 mmol), 1,4-phenyl-
diboronic acid (0.166 g, 1 mmol) and Pd(PPh3)4 (0.200 g, 0.173 mmol) were
added and heated in the dark at 70 uC for 3 days. The solvent was
evaporated and the crude solid was extracted with a water–CH2Cl2 mixture
several times. The collected organic layers were combined and the
concentrated solution was filtered through a silica column using CH2Cl2
at first to remove coloured impurities and then with ethyl acetate to collect
a colourless solution, which upon evaporation yielded analytically pure
white powder of L. Yield ca. 210 mg; 22%. 1H NMR (300 MHz, CDCl3,
3
298 K): d 8.63 (dd, 4H, JH,H = 2.64 Hz, pyrazole), 8.12 (s, 4H), 7.98 (s,
4H), 7.81 (dd, 4H, 3JH,H = 1.7 Hz, pyrazole), 6.54 (m, 4H, 3JH,H = 4.14 Hz;
4JH,H = 1.7 Hz, pyrazole) ppm. 13C NMR (75 MHz, CDCl3, 298 K): d
153.1, 150.7, 142.5, 138.7, 127.9, 127.3, 108.0, 107.2 ppm. FTIR (KBr, n/
cm21) : 916, 939, 956, 999, 1016, 1036, 1070, 1095, 1124, 1159, 1194, 1206,
1252, 1285, 1311, 1395, 1435, 1461, 1520, 1542, 1561, 1578, 1608, 1738.
MALDI-TOF: m/z (relative intensity of isotopic distribution in %)
experiment: 496.63 (100%), 497.63 (35%), 498.63 (15%); simulation:
496.19 (100%), 497.19 (35%), 498.19 (5%).
§ Crystal data for L: C28H20N10; M = 496.54; orthorhombic; space group
˚
Pca21; a = 9.3026(19), b = 9.4892(19), c = 26.467(5) A; a, b, c = 90u; V =
2336.4(8) s3; crystal size = 0.6 6 0.1 6 0.03 mm; index ranges = 29 ¡ h
¡ 11, 211 ¡ k ¡ 10, 232 ¡ l ¡ 21; theta range for data collection =
2.15–25.68u; Z = 4; Dobsd = 1.412 g cm23; F(000) = 1032; m = 0.091 mm21
;
5658 reflections measured, 1308 unique (Rint = 0.0611), R(Fo) = 0.0527;
Rw(F) = 0.1095; GOF on F2 = 0.926; T = 200 K. CCDC 632648. For
crystallographic data in CIF or other electronic format see DOI: 10.1039/
b702468a
" Coordination complex (1): 60 mg (0.12 mmol) of ligand L was dissolved
in a deaerated dichloromethane (75 ml). To this a deaerated methanolic
solution containing 81 mg (0.24 mmol) of Fe(BF4)?6H2O was added and
stirred for 3 days under N2 atmosphere. The solvents were evaporated from
the turbid solution and the formed orange precipitate was collected and
washed with dichloromethane–methanol and finally air dried. Yield 82 mg;
94%. FTIR (KBr, n/cm21): 913, 939, 954, 969, 1065 (b), 1084, 1224, 1174,
1212, 1261, 1288, 1339, 1408, 1465, 1497, 1526, 1550, 1566, 1623, 3136,
3440 (broad, O–H stretch). FT-ICR MS (in MeOH–CH3CN–DMF) :
[Fe5L5–8BF4?(OH2)6]2+ at m/z = 1518.5 (exptl), 1518.81 (calcd); [Fe5L4–
8BF4?(OH2)6]2+ at m/z = 1270.5 (exptl), 1270.73 (calcd); [Fe4L3–
5BF4?(OH2)3?H2O]2+ at m/z = 1021.75 (exptl), 1021.17 (calcd). Elemental
analysis (%) calcd for C28H20B2F8FeN10?H2O: C 45.16, H 2.96, N, 18.82;
Found C 45.58, H 3.47, N, 18.41.
6 M. Schu¨tte, D. G. Kurth, M. R. Linford, H. Co¨lfen and H. Mo¨hwald,
Angew. Chem., Int. Ed., 1998, 37, 2891–2893.
7 (a) D. G. Kurth, F. Caruso and C. Schu¨ler, Chem. Commun., 1999,
1579–1580; (b) Y. Bodenthin, U. Pietsch, H. Mo¨hwald and D. G. Kurth,
J. Am. Chem. Soc., 2005, 127, 3110–3114.
8 (a) E. C. Constable and A. M. W. Cargill Thompson, J. Chem. Soc.,
Dalton Trans., 1992, 3467–3475; (b) J. P. Collin, S. Guillerez, J. P. Sauvage,
F. Barigelletti, L. De Cola, L. Flamigni and V. Balzani, Inorg. Chem.,
1991, 30, 4230; (c) J. R. Kirchhoff, D. R. Mcmillin, P. A. Marnot and
J. P. Sauvage, J. Am. Chem. Soc., 1985, 107, 1138; J. P. Collin,
S. Guillerez and J. P. Sauvage, Inorg. Chem., 1990, 29, 5009; J. P. Collin,
S. Guillerez and J. P. Sauvage, J. Chem. Soc., Chem. Commun., 1989,
776.
1 (a) For a general overview, see: (a) O. Kahn and C. Jay Martinez,
Science, 1998, 279, 44; (b) P. Gu¨tlich and H. A. Goodwin, Spin
9 M. Ruben, J.-M. Lehn and P. Mu¨ller, Chem. Soc. Rev., 2006, 35,
1056–1067.
2638 | Chem. Commun., 2007, 2636–2638
This journal is ß The Royal Society of Chemistry 2007