V. Rawat et al. / Tetrahedron: Asymmetry 20 (2009) 2173–2177
2177
IR (CHCl3) 2930, 2857, 1724, 1655, 1463, 1376; 1H NMR (200 MHz,
4.15. Decarestrictine L, 1
CDCl3): d 6.83–6.94 (m, 1H), 5.82 (d, J = 15.5 Hz, 1H), 4.2 (q,
J = 7.1 Hz, 2H), 2.31 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.18 (d,
J = 6.1 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 6H); 13C NMR (50 MHz, CDCl3):
d 170.7, 146.7, 128.2, 67.9, 59.9, 42.4, 25.7, 23.7, 18.0, 14.2, ꢀ4.58,
ꢀ4.88. Anal. Calcd for C14H28O3Si: C, 61.72; H, 10.36. Found: C,
61.90; H, 11.86.
To a well-stirred solution of aminooxy olefinic ketone 2 (500 mg,
1.23 mmol) in ethanol was added copper acetate (750 mg,
30 mol %). The reaction mixture was then stirred overnight at
25 °C. After completion of reaction (monitored by TLC), the solvent
was removed under reduced pressure and the residue was dis-
solved in dry THF. To this, a solution of 1 M tetrabutylammonium
fluoride (2.55 mL, 2 equiv) was added at 25 °C. The reaction mixture
was stirred at this temperature for 6 h after which the solvent was
removed under reduced pressure and the residue was subjected to
column chromatography with petroleum ether/ethyl acetate (17:3
v/v) to afford decarestrictine L 1 as an oily liquid.
4.13. (R)-(ꢀ)-Ethyl (tert-butyldimethylsilyloxy)hexanal, 3
A mixture of a,b-unsaturated ester 6 (8 g, 29.36 mmol), 10% Pd/
C, and catalytic amount of triethylamine (2 drops) in MeOH
(40 mL) was stirred under H2 (1 atm) at 25 °C for 12 h. After com-
pletion of reaction (monitored by TLC), it was filtered over Celite
plug (MeOH eluent) and the solvent evaporated under reduced
pressure to give the corresponding saturated ester. To a stirred
solution of the saturated ester in dry toluene (150 mL), a solution
of diisobutylaluminium hydride (29.4 mL, 1 M in cyclohexane)
was added dropwise at ꢀ78 °C and was stirred at this temperature
for 1 h. After completion of reaction (monitored by TLC) the reac-
tion mixture was diluted with a saturated solution of Rochelle salt
and was stirred for further 3 h. The organic phase was separated
and the aqueous phase extracted twice with CH2Cl2. The combined
organic phase was then washed with water, brine, and dried over
anhydrous Na2SO4. Removal of solvent under reduced pressure
and column chromatographic purification with petroleum ether/
ethyl acetate (19:1 v/v) gave aldehyde 3 as a colorless liquid. Yield:
Yield: 127 mg (60%);
½
a 2D5
ꢁ
¼ þ28:6 (c 0.5, CHCl3) lit.4
½
a 2D5
ꢁ
¼ þ28:8 (c 0.49, CHCl3); IR (neat, cmꢀ1): 3415, 2965, 2853,
1712, 1598, 1440; 1H NMR (500 MHz, CDCl3):
d 4.03 (q,
J = 6.5 Hz, 1H), 3.97–3.94 (m, 1H), 3.43–3.39 (m, 1H), 2.73 (d,
J = 6.5 Hz, 2H), 2.21 (s, 2H), 2.04 (br s, 1H), 1.90–1.57 (m, 4H),
1.22 (d, J = 6.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): d 207.7, 72.0,
69.4, 67.4, 46.3, 30.5, 28.2, 27.0, 18.4. Anal. Calcd for C9H16O3: C,
62.77; H, 9.36. Found: C, 62.68; H, 9.38.
Acknowledgments
V.R. and P.V.C. thank CSIR, New Delhi for the award of research
fellowships. The authors are thankful to Dr. B. D. Kulkarni, Head,
Chemical Engineering and Process Development Division for his
encouragement and support.
5.55 g, (82%) (over two steps); ½a D25
¼ ꢀ12:0 (c 3.0, CHCl3); IR
ꢁ
(CHCl3, cmꢀ1) 3019, 2930, 2956, 2857, 1722, 1572, 1472, 1439;
1H NMR (200 MHz, CDCl3): d 9.76 (t, J = 1.8 Hz, 1H), 3.68–3.83
(m, 1H), 2.34–2.41 (dt, J = 7.1, 8.8 Hz, 2H), 1.58–1.70 (m, 2H),
1.35–1.43 (m, 2H), 1.10 (d, J = 6.1 Hz, 3H), 0.84 (s, 9H), 0.04 (s,
6H); 13C NMR (50 MHz, CDCl3): d 202.0, 67.6, 43.4, 38.5, 25.4,
23.3, 17.8, 17.6, ꢀ4.84. ꢀ5.23. Anal. Calcd for C12H26O2Si: C,
62.55; H, 11.37. Found: C, 62.65; H, 11.38.
References
1. Grabley, S.; Hammann, P.; Hutter, K.; Kirsch, R.; Kluge, H.; Thiericke, R.; Mayer,
M.; Zeeck, A. J. Antibiot. 1992, 45, 1176–1182.
2. Grabley, S.; Granzer, E.; Hutter, K.; Ludwig, D.; Mayer, M.; Thiericke, R.; Till, G.;
Wink, J.; Philipps, S.; Zeeck, A. J. Antibiot. 1992, 45, 56–65.
3. Gohrt, A.; Zeeck, A.; Hutter, K.; Kirsch, R.; Kluge, H.; Thiericke, R. J. Antibiot.
1992, 45, 66–73.
4. Machinaga, N.; Kibayashi, C. Tetrahedron Lett. 1993, 34, 5739–5742.
5. (a) Nokami, J.; Taniguchi, T.; Ogawa, Y. Chem. Lett. 1995, 43–44; (b) Clark, J. S.;
Whitlock, G. A. Tetrahedron Lett. 1994, 35, 6381–6382; (c) Clark, J. S.; Fessard, T.
C.; Whitlock, G. A. Tetrahedron 2006, 62, 73–78; (d) Solladie, G.; Arce, E.;
Bauder, C.; Carreno, M. C. J. Org. Chem. 1998, 63, 2332–2337; (e) Esumi, T.;
Kimura, R.; Mori, M.; Iwabuchi, Y.; Irie, H.; Hatakeyama, S. Heterocycles 2000,
52, 525–528; (f) Lukesh, J. M.; Donaldson, W. A. Tetrahedron: Asymmetry 2003,
14, 757–762; (g) Garcia, I.; Gomez, G.; Teijeira, M.; Teran, C.; Fall, Y. Tetrahedron
Lett. 2006, 47, 1333–1335.
4.14. Aminoxy olefinic ketone, 2
To a stirred solution of nitrosobenzene (0.88 g, 8.20 mmol) and
D
-proline (210 mg, 20 mol%) in CH3CN (40 mL) was added precur-
sor aldehyde 3 (2.11 g, 9.11 mmol) at ꢀ20 °C. The reaction mixture
was stirred at the same temperature for 24 h followed by the addi-
tion of diethyl(2-oxopropyl)phosphonate (2.65 g, 13.67 mmol) and
Cs2CO3 (4.45 g, 13.67 mmol). After stirring for 2 h at 0 °C, reaction
was quenched with saturated NH4Cl and extracted with ethylace-
tate (3 ꢃ 60 mL). The combined organic phase was dried over
anhydrous Na2SO4 and concentrated under reduced pressure. Puri-
fication by column chromatography with petroleum ether/ethyl
acetate (9:1 v/v) afforded aminooxy olefinic ketone 2 as a yellow
6. Riatto, V. B.; Pilli, R. A.; Victor, M. M. Tetrahedron 2008, 10, 2279–2300.
7. Macmillan, D. W. C. Nature 2008, 455, 304–308.
8. For
a review of proline-catalyzed asymmetric reactions, see: (a) List, B.
Tetrahedron 2002, 58, 5573–5590; (b) Hayashi, Y.; Yamaguchi, J.; Hibino, K.;
Shoji, M. Tetrahedron Lett. 2003, 44, 8293–8296; (c) Hayashi, Y.; Yamaguchi, J.;
Sumiya, T.; Shoji, M. Angew. Chem., Int. Ed. 2004, 43, 1112–1115; (d) Brown, S.
P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125,
10808–10809; (e) Cordova, A.; Sunden, H.; Bøgevig, A.; Johansson, M.; Himo, F.
Chem. Eur. J. 2004, 10, 3673–3684; (f) Zhong, G.; Yu, Y. Org. Lett. 2004, 6, 1637–
1639; (g) Kotkar, S. P.; Chavan, V. B.; Sudalai, A. Org. Lett. 2007, 9, 1001–1004;
(h) Zhao, G.-L.; Liao, W.-W.; Cordova, A. Tetrahedron Lett. 2006, 47, 4929–4932;
(i) Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3696–3697.
9. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936–
938.
10. (a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345–350; (b) Kitamura, M.;
Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1993, Coll. Vol. 9, 589–597; (c)
King, S. A.; Thompson, A. S.; King, A. O.; Verhoeven, T. R. J. Org. Chem. 1992, 57,
6689–6691.
11. Turcu, M. C.; Kiljunen, E.; Kanerva, L. T. Tetrahedron: Asymmetry 2007, 14,
1682–1687.
oily liquid. Yield: 2.06 g (60%); ½a D25
¼ ꢀ12:5 (c 4.0, CHCl3); IR (neat,
ꢁ
cmꢀ1): 3155, 2956, 2930, 2857, 1677, 1472, 1377; 1H NMR
(200 MHz, CDCl3): d 7.24–7.16 (m, 2H), 6.93–6.82 (m, 3H), 6.74–
6.63 (dd, J = 6.6, 16.2 Hz, 1H), 6.23 (d, J = 16.2 Hz, 1H), 4.38–4.28
(m, 1H), 3.86–3.73 (m, 1H), 2.23 (s, 3H), 1.96–1.44 (m, 4H), 1.09
(d, J = 6.1 Hz, 3H), 0.84 (s, 9H), 0.04 (s, 6H); 13C NMR (50 MHz,
CDCl3)): d 197.9, 148.4, 145.9, 131.7, 128.9, 122.1, 114.3, 83.2,
68.1, 34.8, 29.3, 27.3, 25.9, 23.8, 18.1, ꢀ4.27, ꢀ4.7. Anal. Calcd for
C21H35NO3Si: C, 66.80; H, 9.34; N, 3.71. Found: C, 66.85; H, 9.38;
N, 3.91.
12. Perlmutter, P.; Selajerern, W.; Vounatsos, F. Org. Biomol. Chem. 2004, 2, 2220–
2228.