tention that has culminated in different total syntheses.8
Because opposite enantiomers can display different phar-
macological and toxicological properties,9 the synthesis of
enantiomerically pure compounds is required. Nevertheless,
among the reported investigations, only a few synthetic
approaches were devised to provide optically active car-
bocyclic oxetanocins (A and G), including optical resolution10
and stereoselective synthesis.11 Most of these approaches
involve a large number of steps or they present moderate
enantioselectivity, resulting in relatively low overall yields.
Consequently, a further refined synthetic approach to enan-
tiomerically pure oxetanocin carbocyclic analogues is still
awaited.
Scheme 1. Synthetic Strategy to Oxetanocin Cyclobutane
Analogues
As part of our efforts to synthesize novel cyclobutane
nucleosides and evaluate them as antiviral agents, herein we
describe a practical route to a suitably trisubstituted cyclobu-
tane, 7, which can be used as a key common intermediate
for the preparation of oxetanocin carbocyclic analogues. As
an application of this methodology, (-)-cyclobut-A has been
prepared.
(S)-5-Pivaloyloxymethyl-2(5H)-furanone, 3, was visualized
as an appropriate starting material to undertake the synthesis
of the target cyclobutane nucleosides through the strategy
depicted in Scheme 1. Our plan involved four main trans-
formations: (i) cyclobutanone construction by a regio- and
diastereoselective [2 + 2] photocycloaddition of 3 to 1,1-
diethoxyethylene, 4, followed by removal of the acetal group;
(ii) stereoselective reduction of the ketone; (iii) epimerization
at C-1′; and (iv) nucleobase introduction onto the cyclobutane
moiety of 7.
investigated. This photochemical reaction could lead to the
formation of up to four compounds, the head-to-head (HH)
and head-to-tail (HT) anti isomers and the HH and HT syn
isomers (Table 1). It has been reported that the photocy-
Table 1. Photochemical Reaction of Lactone 3 to
1,1-Diethoxyethylene, 4
Accordingly, our initial efforts focused on the preparation
of the key cyclobutanone unit 5. The photochemical reaction
of 5-substituted 2(5H)-furanones to ketene dialkyl acetals
has received little attention,12 and to the best of our
knowledge, a diastereoselective version has not yet been
(7) (a) Norbeck, D. W.; Kern, E.; Hayashi, S.; Rosenbrook, W.; Sham,
H.; Herrin, T.; Plattner, J. J.; Erickson, J.; Clement, J.; Swanson, R.;
Shipkowitz, N.; Hady, D.; Marsh, K.; Arnett, G.; Shannon, W.; Broder, S.;
Mitsuya, H. J. Med. Chem. 1990, 33, 1281-1285. (b) Field, A. K.; Tuomari,
A. V.; McGeever-Rubin, B.; Terry, B. J.; Mazina, K. E.; Haffey, M. L.;
Hagen, M. E.; Clark, J. M.; Braitman, A.; Slusarchyk, W. A.; Young, M.
G.; Zahler, R. AntiViral Res. 1990, 13, 41-52.
solventa
yieldb (%)
8/9/10/11c
HT/HH
anti/syn
acetonitrile
ether
hexane
61
75
72
50:22:21:7
58:34:5:3
52:39:6:3
72:28
92:8
91:9
71:29
63:37
58:42
(8) (a) Ichikawa, E.; Kato, K. Synthesis 2002, 1-28. (b) Ortun˜o, R. M.;
Moglioni, A. G.; Moltrasio, G. Y. Curr. Org. Chem. 2005, 9, 237-259
and references cited therein.
a Irradiation through a quartz filter at -20 °C. b Isolated yield of the
mixture of stereoisomers after column chromatography. c Isomer ratio from
GC analysis of the reaction crude.
(9) (a) Terry, B. J.; Cianci, C. W.; Hagen, M. E. Mol. Pharm. 1991, 40,
591-596. (b) Wang, P.; Gullen, B.; Newton, M. G.; Cheng, Y. C.; Schinazi,
R. F.; Chu, C. K. J. Med. Chem. 1999, 42, 3390-3399.
(10) Chemical resolution: (a) Hsiao, C.-N.; Hannick, S. M. Tetrahedron
Lett. 1990, 31, 6609-6612. (b) Bisacchi, G.; Braitman, A.; Cianci, C. W.;
Clark, J. M.; Field, A. K.; Hagen, M. E.; Hockstein, D. R.; Malley, M. F.;
Mitt, T.; Slusarchyk, W. A.; Sundeen, J. E.; Terry, B. J.; Tuomari, A. V.;
Weaver, E. R.; Young, M. G.; Zahler, R. J. Med. Chem. 1991, 34, 1415-
1421. Enzymatic resolution: (c) Cotterill, I. C.; Roberts, S. M. J. Chem.
Soc., Perkin Trans. 1 1992, 2585-2586.
cloaddition of cyclic enones to electron-rich alkenes occurs
with predictable regioselectivity, giving mainly HT adducts,13
although slight variations of the reaction conditions, par-
ticularly the solvent, can dramatically change the regio-
selectivity.14 Hence, we have examined the effect of the
(11) Enantioselective synthesis: Reference 6. Enzymatic synthesis: (a)
Jung, M. E.; Sledeski, A. W. J. Chem. Soc., Chem. Commun. 1993, 589-
591. Diastereoselective synthesis: (b) Ahmad, S. Tetrahedron Lett. 1991,
32, 6997-7000. (c) Izawa, T.; Ogino, Y.; Nishiyama, S.; Yamamura, S.;
Kato, K.; Takita, T. Tetrahedron 1992, 48, 1573-1580. (d) Brown, B.;
Hegedus, L. S. J. Org. Chem. 1998, 63, 8012-8018. Chiral pool
synthesis: (e) Ito, H.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 1993,
34, 7639-7640.
(13) (a) Corey, E. J.; Bass, J. D.; LeMahieu, R.; Mitra, R. B. J. Am.
Chem. Soc. 1964, 86, 5570-5583. (b) Crimmins, M. T. Chem. ReV. 1988,
88, 1453-1473. (c) Schuster, D. I.; Lem, G.; Kaprinidis, N. A. Chem. ReV.
1993, 93, 3-22. (d) Schuster, D. I. In The Chemistry of Enones; Patai, S.,
Rappoport, Z., Eds.; Wiley: New York, 1989; pp 623-756.
(14) Lange G. L.; Decicco C.; Lee M. Tetrahedron Lett. 1987, 28, 2833-
2836 and references cited therein.
(12) (a) Tada, M.; Kokubo, T.; Sato, T. Tetrahedron 1972, 28, 2121-
2125. (b) Kosugi, H.; Sekiguchi, S.; Sekita, R.; Uda, H. Bull. Chem. Soc.
Jpn. 1976, 520-528.
2828
Org. Lett., Vol. 9, No. 15, 2007