In the course of our research aimed at synthesizing 2-4,
we sought an efficient method for the construction of the
core structure 1. Herein, we report a novel oxidative
cyclization of quinone-arenols 5 with benzo-1,4-quinone (7)
or chloranil (8) in the presence of molecular oxygen (O2),
leading to cyclization products 6 having the dibenzofuran-
1,4-dione core structure 1 (Scheme 1). This cyclization
reaction was also applied to an efficient synthesis of 4.
Table 1. Preparation of Quinone-arenols 5 from Hydroquinone
Monomethylethers 9
Scheme 1. Oxidative Cyclization of Quinone-arenols 5
Our research began with preparation of the starting 2,2′-
quinonearenols 5 via a two-step sequence involving oxidative
dimerization of hydroquinone monomethyl ethers 9 and
monodemethylation of the resulting [2,2′]arenylidene-1,1′-
diones 10 (Scheme 2, Table 1).7b,11,12 Thus, the 2,2′-
Scheme 2. Preparation of Quinone-arenols 5
followed by O-monodemethylation of the [2,2′]binaphtha-
lenylidene-1,1′-diones 10a and 10b with SnO2 (entries 1 and
2). Similarly, [2,2′]biphenyl-1,4-diones 5c-e were also
prepared from the corresponding phenols 9c-e (entries 3-5)
(see Supporting Information).13
quinonenaphthols 5a and 5b were readily prepared by
oxidative dimerization of the corresponding 1-naphthols 9a
and 9b with benzoquinone (7) and chloranyl (8), respectively,
With the substrates 5a-e in hand, we next examined the
key oxidative cyclization of 5 using benzoquinone (7) or
chloranyl (8) as an oxidant (Scheme 1, Table 2). After
screening various solvents and temperatures for cyclization
of 5a, the best result was obtained by heating in toluene with
7. Thus, the quinone-naphthol 5a, on heating with 7 (1.1
equiv) in toluene at 100 °C under argon, underwent oxidative
cyclization with consumption of 7 to give 6a in 76% yield
along with some polymeric precipitates (entry 1). To clarify
hydroquinone formation from benzoquinone (7) during the
reaction, the reaction mixture was treated with acetic
anhydride (Ac2O) in the presence of Mg(ClO4)214 to furnish
hydroquinone diacetate in 80% yield from 7. This result
shows that 7 acts as an oxidant, accepting two hydrogen
(7) (a) Buchan, R.; Musgrave, O. C. J. Chem. Soc., Perkin Trans. 1 1980,
90-92. (b) Ogata, T.; Okamoto, I.; Kotani, E.; Takeya, T. Tetrahedron
2004, 60, 3941-3948. (c) Anderson, J. C.; Denton, R. M.; Wilson, C. Org.
Lett. 2005, 7, 123-125.
(8) (a) Shand, A. J.; Thomson, R. H. Tetrahedron 1963, 19, 1919-1937.
(b) Ueki, Y.; Itoh, M.; Katoh, T.; Terashima, S. Tetrahedron Lett. 1996,
37, 5719-5722. (c) Katoh, T.; Nakatani, M.; Shikita, S.; Sampe, R.;
Ishiwata, A.; Ohmori, O.; Nakamura, M.; Terashima, S. Org. Lett. 2001,
3, 2701-2704.
(9) (a) Martinez, E.; Martinez, L.; Estevez, J. C.; Estevez, R. J.; Castedo,
L. Tetrahedron Lett. 1998, 39, 2175-2176. (b) Chang, H.; Chou, T.; Savaraj,
N.; Liu, L. F.; Yu, C.; Cheng, C. C. J. Med. Chem. 1999, 42, 405-408. (c)
Martinez, E.; Martinez, L.; Treus, M.; Estevez, J. C.; Estevez, R. J.; Castedo,
L. Tetrahedron 2000, 56, 6023-6030. (d) Martinez, A.; Fernandez, M.;
Estevez, J. C.; Estevez, R. J.; Castedo, L. Tetrahedron 2005, 61, 1353-
1362. (e) Miguel del Corral, J. M.; Castro, M. A.; Gordaliza, M.; Martin,
M. L.; Gamito, A. M.; Cuevas, C.; San Feliciano, A. Bioorg. Med. Chem.
2006, 14, 2816-2827.
(10) Azevedo, M. S.; Alves, G. B. C.; Cardoso, J. N.; Lopes, R. S. C.;
Lopes, C. C. Synthesis 2004, 1262-1268.
(11) (a) Takeya, T.; Otsuka, T.; Okamoto, I.; Kotani, E. Tetrahedron
2004, 60, 10681-10693. (b) Takeya, T.; Kondo, H.; Otsuka, T.; Doi, H.;
Okamoto, I.; Kotani, E. Chem. Pharm. Bull. 2005, 53, 199-206.
(12) Hewgill, F. R.; Greca, B. L.; Legge, F.; Roga, P. E. J. Chem. Soc.,
Perkin Trans. 1 1983, 131-134.
(13) The intermediate 10c for the preparation of 5c was obtained in only
40% yield by oxidative dimerization, crystallization, and collection by
filtration. The low yield may be due to low crystallinity of 10c.
(14) Chakraborti, A. K.; Sharma, L.; Gulhane, R.; Shivani, S. Tetrahedron
2003, 59, 7661-7668.
2808
Org. Lett., Vol. 9, No. 15, 2007