Interestingly, Taguchi and Kitagawa established early that
iodonium-triggered reactions are of practical interest to
assemble the related (E)-2-iodomethylenecyclopentane scaf-
fold by promoting the carbocyclization of a titanium enolate
onto the alkyne (Figure 2a).10,11 They expand the scope of
Recently, Liang used an iodination reaction in the presence
of t-BuOK to accomplish the cyclization of 2-(2-ethynyl)-
benzylmalonate derivatives and related methyne active
compounds (Figure 2c).13 The observed 5-exo- and 6-endo-
dig selectivities were shown to be dependent on the starting
material. On this basis, our interest14 in iodination reactions
with concomitant ring-elaboration15 prompted us to inves-
tigate the challenging iodocarbocyclization reaction of an
alkyne and an active methyne compound according to the
more elusive 5-endo-dig mode,16,17 as depicted in Figure 2
(entry d). The feasibility of this entry to cyclopentene
derivatives is established herein.
Initially, different conditions were screened to attempt the
target iodocarbocyclization of 2-acetylhept-5-ynoic acid ethyl
ester 1a to 1-acetyl-3-iodo-2-methylcyclopent-2-enecarboxy-
lic acid ethyl ester 2a (see Table 1). Reactions were
conducted at room temperature, and I2 and IPy2BF4 were
assayed as potential iodinating trigger reagents (1:1 with
respect to 1a). The former gave simpler reaction crudes and
offered better performance for the cyclization. Toluene,
MeCN, and CH2Cl2 were tested as solvents, the latter
allowing the cyclization to occur adequately. The major
competing reaction pathway was the 1,2-addition of I2 across
the alkyne.18 Its impact was minimized by increasing the
dilution from initial 0.3 up to 0.05 M. With use of these
simple experimental conditions, pure 2a was isolated in 70%
yield after reaction for 5 h and chromatographic purification
(Table 1, entry 1).19
Figure 2. Products (E: CO2R) arising from iodocarbocyclization
reactions of ꢀ-alkynylmalonate enolates (entries a,c) and from an
alternative carbotitanation-iodolysis sequence (entry b). Target
transformation (entry d).
The effect of different additives over the outcome of the
reaction in CH2Cl2 was investigated. Addition of NaHCO3
increases the ratio in favor of the iodine 1,2-addition product,
the cyclization showing that an alternative carbotitanation
of the alkyne followed by iodolysis of the resulting C-Ti
bond renders the (Z)-isomers (Figure 2b).12
(12) (a) Kitagawa, O.; Suzuki, T.; Inoue, T.; Taguchi, T. Tetrahedron
Lett. 1998, 39, 7357-730. (b) Kitagawa, O.; Suzuki, T.; Inoue, T.;
Watanabe, Y.; Taguchi, T. J. Org. Chem. 1998, 63, 9470-9475. For an
account on their work on iodocarbocyclization and iodoaminocyclization
reactions see: (c) Kitagawa, O.; Taguchi, T. Synlett 1999, 1191-1199.
(13) Bi, H.-P.; Guo, L.-N.; Duan, X.-H.; Gou, F.-R.; Huang, S.-H.; Liu,
X.-Y.; Liang, Y.-M. Org. Lett. 2007, 9, 397-400.
(14) Recent work: (a) Barluenga, J.; Va´zquez-Villa, H.; Merino, I.;
Ballesteros, A.; Gonza´lez, J. M. Chem. Eur. J. 2006, 12, 5790-5805. (b)
Barluenga, J.; Trincado, M.; Rubio, E.; Gonza´lez, J. M. Angew. Chem.,
Int. Ed. 2006, 45, 3140-3143.
(15) Representative recent work: Worlikar, S. A.; Kesharwani, T.; Yao,
T.; Larock, R. C. J. Org. Chem. 2007, 72, 1347-1350. (b) Amjad, M.;
Knight, D. W. Tetrahedron Lett. 2006, 47, 2825-2828. (c) Zhou, C.;
Dubrovsky, A. V.; Larock, R. C. J. Org. Chem. 2006, 71, 1626-1632. (d)
Hessian, K. O.; Flynn, B. L. Org. Lett. 2006, 8, 243-246.
(16) Recent iodination reactions with ring elaboration: (a) Foot, O. F.;
Knight, D. W.; Low, A. C. L.; Li, Y. F. Tetrahedron Lett. 2007, 48, 647-
650. (b) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 10292-
10296. Early work: (c) Bew, S. P.; Knight, D. W. Chem. Commun. 1996,
1007-1008.
(17) Related metal-catalyzed 5-endo-dig alkyne carbocyclization by
reaction with the CH bond: (a) Ajamian, A.; Gleason, J. L. Org. Lett. 2003,
5, 2409-2411. (b) Tanaka, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123,
11492-11493. Ketones: (c) Kel’in, A. V.; Gevorgyan, V. J. Org. Chem.
2002, 67, 95-98. With imines: (d) Kel’in, A. V.; Sromek, A. W.;
Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074-2075. See also: (e)
Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R- Org. Lett. 2007,
9, 1169-1171.
(4) Conia, J. M.; Le Perchec, P. Synthesis 1975, 1-19.
(5) (a) Pe´rez-Herna´ndez, N.; Febles, M.; Pe´rez, C.; Pe´rez, R.; Rodr´ıguez,
M. L.; Foces-Foces, C.; Mart´ın, J. D. J. Org. Chem. 2006, 71, 1139-1151.
(b) Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. 2006, 128, 16486-
16487. (c) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168-
17169. (d) Gao, Q.; Zheng. B.-F.; Li, J.-H.; Yang, D. Org. Lett. 2005, 7,
2185-2187. (e) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am.
Chem. Soc. 2004, 126, 4526-4527. (f) Kitagawa, O.; Fujiwara, H.; Suzuki,
T.; Taguchi, T.; Shiro, M. J. Org. Chem. 2000, 65, 6819-6825. (g) Renaud,
J.-L.; Aubert, C.; Malacria, M. Tetrahedron 1999, 55, 5113-5128. (h)
Bouyssi, D.; Monteiro, N.; Balme, G. Tetrahedron Lett. 1999, 40, 1297-
1300. (i) Cruciani, P.; Stammler, R.; Aubert, C.; Malacria, M. J. Org. Chem.
1996, 61, 2699-2708. (j) Boaventura, M. A.; Drouin, J.; Conia, J. M.
Synthesis 1983, 801-804.
(6) (a) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem.,
Int. Ed. 2004, 43, 5350-5352. (b) McDonald, F. E.; Olson, T. C.
Tetrahedron Lett. 1997, 38, 7691-7692.
(7) Iwasaba, N.; Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Lee, P. H.
Org. Lett. 2002, 4, 4463-4466.
(8) (a) Li, Y.; Yu, Z.; Alper, H. Org. Lett. 2007, 9, 1647-1649. (b)
Guo, L.-N.; Duan, X.-H.; Bi, H.-P.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem.
2007, 72, 1538-1540. (c) Zhang, D.; Liu, Z.; Yum, E.; Larock, R. C. J.
Org. Chem. 2007, 72, 251-262. (d) Duan, X.-H.; Guo, L.-N.; Bi, H.-P.;
Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2006, 8, 3053-3056. (e) Guo, L.-N.;
Duan, X.-H.; Bi, H.-P.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2006, 71,
3325-3327.
(9) Zhang, D.; Yum, E. K.; Liu, Z.; Larock, R. C. Org. Lett. 2005, 7,
4963-4966.
(10) Kitagawa, O.; Inoue, T.; Hirano, K.; Taguchi, T. J. Org. Chem.
1993, 58, 3106-3112.
(11) Related cyclizations were described for N-alkyl-N-propargyl-â-
ketoamides using alternative conditions: (a) Cossy, J.; Thellend, A.
Tetrahedron Lett. 1990, 31, 1427-1428. Some examples of related 5-exo-
dig radical cyclizations by atom-transfer reactions of 2-iodo-6-alkynyl esters
have been reported: (c) Curran, D. P.; Chang, C.-T. J. Org. Chem. 1989,
54, 3140-3157.
(18) Addition of I2 to alkynes: (a) Larson, S.; Luidhardt, T.; Kabalka,
G. W.; Pagni, R. M. Tetrahedron Lett. 1988, 29, 35-36. (b) Hollins, R.
A.; Campos, M. P. A. J. Org. Chem. 1979, 44, 3931-3934. See also: (c)
He´naff, N.; Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1997, 38, 4525-
4526.
(19) All new compounds gave NMR spectroscopic and analytical or MS
data in agreement with their proposed structures. For further details see the
Supporting Information.
2824
Org. Lett., Vol. 9, No. 15, 2007