M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, T. Ishida, M.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03,
Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
and T. Kawamura, Inorg. Chim. Acta, 1994, 218, 199–202; (c) D. J.
Darensbourg, M. L. M. Jones and J. H. Reibenspies, Inorg. Chem.,
1996, 35, 4406–4413; (d) R. F. R. Jazzar, P. H. Bhatia, M. F. Mahon
and M. K. Whittlesey, Organometallics, 2003, 22, 670–683; (e) J. C. Kim,
J. Cho, H. Kim and A. J. Lough, Chem. Commun., 2004, 1796–1797.
34 T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48–76.
35 See for instance:(a) R. R. Jacobson, Z. Tyekla´r and K. D. Karlin, Inorg.
Chim. Acta, 1991, 181, 111–118; (b) N. Wei, N. N. Murthy, Z. Tyekla´r
and K. D. Karlin, Inorg. Chem., 1994, 33, 1177–1183; (c) N. Wei, N. N.
Murthy, Q. Chen, J. Zubieta and K. D. Karlin, Inorg. Chem., 1994, 33,
1953–1965; (d) T. Osako, Y. Ueno, Y. Tachi and S. Itoh, Inorg. Chem.,
2003, 42, 8087–8097; (e) K. Komiyama, H. Furutachi, S. Nagatomo,
A. Hashimoto, H. Hayashi, S. Fujinami, M. Suzuki and T. Kitagawa,
Bull. Chem. Soc. Jpn., 2004, 77, 59–72.
36 B. Lucchese, K. J. Humphreys, D.-H. Lee, C. D. Incarvito, R. D.
Sommer, A. L. Rheingold and K. D. Karlin, Inorg. Chem., 2004, 43,
5987–5998.
37 T. Osako, K. D. Karlin and S. Itoh, Inorg. Chem., 2005, 44, 410–415.
38 J. March, Advanced Organic Chemistry, John Wiley & Sons, Inc., New
York, 4th edn, 1992, p. 21.
39 A. J. Arduengo, III, H. V. Rasika Dias, R. L. Harlow and M. Kline,
J. Am. Chem. Soc., 1992, 114, 5530–5534, and references cited therein.
40 H. O. House, C.-Y. Chu, J. M. Wilkins and M. J. Umen, J. Org. Chem.,
1975, 40, 1460–1469.
41 The following approximate equation was used for the calculation of
DG‡: DG‡ = 4.57 Tc (9.97 + log(Tc/Dm)) [cal mol−1] with Tc = 176 K
and Dm = 207.6 Hz according to, H. Gu¨nther, NMR Spectroscopy,
Georg Thieme Verlag, Stuttgart, Germany, 1973, p. 248.
23 A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829–
5835.
24 Basis sets were obtained from the Extensible Computational
Chemistry Environment Basis Set Database, Version 02/25/04
(http://www.emsl.pnl.gov/forms/basisform.html), as developed and
distributed by the Molecular Science Computing Facility, Environ-
mental and Molecular Sciences Laboratory, which is part of the Pacific
Northwest Laboratory, P.O. Box, 999, Richland, WA 99352, and funded
by the U.S. Department, of Energy. The Pacific Northwest Laboratory
is a multiprogram laboratory operated by Battelle Memorial Institute
for the U.S. Department, of Energy under Contract No. DE-AC06-
76RLO 1830. Contact David Feller or Karen Schuchardt for further
information.
25 The reaction enthalpies were calculated by subtracting the energies of
the ground-state electronic structures of T-shaped 5 and the respective
ligand (CH3CN or isocyanide) from that of the corresponding acetoni-
trile complex 5·NCCH3 or from those of the isocyanide complexes 6a
and 6b, respectively.
42 (a) A. Bondi, J. Phys. Chem., 1964, 68, 441–451; (b) R. S. Rowland and
R. Taylor, J. Phys. Chem., 1996, 100, 7384–7391.
43 (a) B. J. Hathaway, in Comprehensive Coordination Chemistry, ed.
G. Wilkinson, Pergamon Press, Oxford, 1987, vol. 5, p. 533; (b) R.
Mukherjee, in Comprehensive Coordination Chemistry II, ed. J. A. Mc-
Cleverty and T. J. Meyer, Elsevier, Oxford, 2004, vol. 6, p. 747.
44 P. C. Healy, J. D. Kildea and A. H. White, Aust. J. Chem., 1989, 42,
137–148.
26 A. N. Vedernikov, P. Wu, J. C. Huffman and K. G. Caulton, Inorg.Chim.
Acta, 2002, 330, 103–110.
27 (a) M. Doux, L. Ricard, P. Le Floch and N. Me´zailles, Dalton Trans.,
2004, 2593–2600; (b) H. V. R. Dias and S. Singh, Inorg. Chem., 2004,
43, 5786–5788; (c) H. V. R. Dias, H.-L. Lu, J. D. Gorden and W. Jin,
Inorg. Chem., 1996, 35, 2149–2151.
45 (a) D. A. Haitko, J. Coord. Chem., 1984, 13, 119–122; (b) J. C. Dyason,
P. C. Healy, C. Pakawatchai, V. A. Patrick and A. H. White, Inorg.
Chem., 1985, 24, 1957–1960; (c) J. C. Dyason, L. M. Engelhardt, P. C.
Healy, J. D. Kildea and A. H. White, Aust. J. Chem., 1988, 41, 335–
340; (d) J. Zukerman-Schpector, E. E. Castellano and G. Oliva, Inorg.
Chim. Acta, 1990, 175, 1–2; (e) M. J. Jedrzejas, R. A. Martuch, R. L. R.
Towns, R. J. Baker, S. A. Duraj and A. F. Hepp, Acta Crystallogr., 1993,
49, 536–538; (f) G. Jones and E.-M. Zerbe, Acta Crystallogr., Sect. E,
2005, E61, m106–m107.
28 W. B. Tolman, L. M. R. Hill, D. Petrovic and M. Tamm, unpublished
work.
29 N. Kitajima, S. Hikichi, M. Tanaka and Y. Moro-oka, J. Am. Chem.
Soc., 1993, 115, 5496–5508.
30 (a) M. R. Churchill, G. Davies, M. A. El-Sayed, M. F. El-Shazly, J. P.
Hutchinson and M. W. Rupich, Inorg. Chem., 1980, 19, 201–208; (b) I.
Sanyal, R. W. Strange, N. J. Blackburn and K. D. Karlin, J. Am. Chem.
Soc., 1991, 113, 4692–4693; (c) A. Nanthakumar, M. S. Nasir and K. D.
Karlin, J. Am. Chem. Soc., 1992, 114, 6564–6566; (d) I. Sanyal, K. D.
Karlin, R. W. Strange and N. J. Blackburn, J. Am. Chem. Soc., 1993,
115, 11259–11270; (e) T. N. Sorrell, W. E. Allen and P. S. White, Inorg.
Chem., 1995, 34, 952–960; (f) A. Escuer, F. A. Mautner, E. Pen˜alba
and R. Vicente, Inorg. Chem., 1998, 37, 4190–4196; (g) Y. Nishida,
A. Yatani, Y. Nakao, J.-i. Taka, S. Kashino, W. Mori and S. Suzuki,
Chem. Lett., 1999, 135–136; (h) G. A. van Albada, I. Mutikainen, O. S.
Roubeau, U. Turpeinen and J. Reedijk, Eur. J. Inorg. Chem., 2000,
2179–2184; (i) E. Garcia-Espan˜a, P. Gavin˜a, J. Latorre, C. Soriano and
B. Verdejo, J. Am. Chem. Soc., 2004, 126, 5082–5083; (j) L. Y. Kong,
Z.-H. Zhang, H.-F Zhu, H. Kawaguchi, T.-a. Okamura, M. Doi, Q.
Chu, W.-Y. Sun and N. Ueyama, Angew. Chem., Int. Ed., 2005, 44,
4352–4355.
46 The Cambridge Structural Database (Version 5.27, November 2005)
contains 42 entries for dichlorocuprate salts, if only structures without
disorder and R values < 7.5% are considered, the Cu–Cl distances
˚
˚
range from 2.053 to 2.154 A, with a mean value of 2.091 A.
47 (a) D. F. Shriver, P. Atkins and C. H. Langford, in Inorganic Chemistry,
3rd edn, Freeman, New York, 1994, p. 195; (b) F. A. Cotton, G.
Wilkinson, C. A. Murillo and M. Bochmann, in Advanced Inorganic
Chemistry, 6th edn, John Wiley & Sons, Inc., New York, 1999, p. 855.
48 R. D. Pike, W. H. Starnes, Jr., J. P. Jeng, W. S. Bryant, P. Kourtesis,
C. W. Adams, S. D. Bunge, Y. M. Kang, A. S. Kim, J. H. Kim, J. A.
Macko and C. P. O’Brien, Macromolecules, 1997, 30, 6957–6965.
49 I. Persson, J. E. Penner-Hahn and K. O. Hodgson, Inorg. Chem., 1993,
32, 2497–2501 and references therein.
50 (a) S. Brooker, T. C. Davidson, S. J. Hay, R. J. Kelly, D. K. Kennepohl,
P. G. Plieger, B. Moubaraki, K. S. Murray, E. Bill and E. Bothe, Coord.
Chem. Rev., 2001, 216–217, 3–30; (b) M. Dunaj-Jurcˇo, G. Ondrejovicˇ,
M. Meln´ık and J. Garaj, Coord. Chem. Rev., 1998, 83, 1–28.
31 For recent reviews, see: (a) G. Parkin, Chem. Rev., 2004, 104, 699–767;
(b) E. Kimura, Acc. Chem. Res., 2001, 34, 171–179; (c) H. Vahrenkamp,
Acc. Chem. Res., 1999, 32, 589–596.
32 (a) L. Latos-Grazynski, J. Lisowski, M. M. Olmstead and A. L. Balch,
J. Am. Chem. Soc., 1987, 109, 4428–4429; (b) Z.-W. Mao, G. Liehr
and R. van Eldik, J. Am. Chem. Soc., 2000, 122, 4839–4840; (c) C. R.
Choudhury, S. K. Dey, S. Mitra and V. Gramlich, Dalton Trans., 2003,
1059–1060; (d) S. Iglesias, O. Castillo, A. Luque and P. Roma´n, Inorg.
Chim. Acta, 2003, 349, 273–278; (e) Z.-L. You, W.-S. Liu, H.-L. Zhu
and H.-K. Fun, Transition Met. Chem., 2005, 30, 1–4.
51 See for instance: (a) M. Leschke, M. Melter, B. Walfort, A. Driess, G.
Huttner and H. Lang, Z. Anorg. Allg. Chem., 2004, 630, 2022–2030;
(b) H.-F. Yang, C.-C. Huang, H.-H. Zhang, Y. Liu, Z.-X. Lian and
G.-C. Xiao, Acta Crystallogr.. Sect. E, 2004, E60, m291–m293; (c) M.
Munakata, L. P. Wu, T. Kuroda-Sowa, M. Yamamoto, M. Maekawa
and K. Moriwaki, Inorg. Chim. Acta, 1998, 268, 317–321; (d) J. Kaiser,
G. Brauer, F. A. Schro¨der, I. F. Taylor and S. E. Rasmussen, J. Chem.
Soc., Dalton Trans., 1974, 1490–1493; (e) W. C. Marsh and J. Trotter,
J. Chem. Soc. A, 1971, 1482–1486.
33 (a) S. F. Hossain, K. M. Nicholas, C. L. Teas and R. E. Davis,
J. Chem. Soc., Chem. Commun., 1981, 268–269; (b) M. Ito, M. Ebihara
2822 | Dalton Trans., 2007, 2812–2822
This journal is
The Royal Society of Chemistry 2007
©