Angewandte
Chemie
aromaticity) or positive (suggestive of paratropic ring currents
[1] a) K. Müllen, J. P. Rabe, Ann. N. Y. Acad. Sci. 1998, 852, 205;
b) M. D. Watson, A. Fechtenkotter, K. Mullen, Chem. Rev. 2001,
101, 1267; c) M. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev.
2004, 104, 4891; d) J. E. Anthony, Chem. Rev. 2006, 106, 5028.
[2] a) C. D. Entwistle, T. B. Marder, Chem. Mater. 2004, 16, 4574;
b) S. Yamaguchi, S. Akiyama, K. Tamao, J. Am. Chem. Soc. 2000,
122, 6335; c) S. Yamaguchi, T. Shirasaka, S. Akiyama, K. Tamao,
J. Am. Chem. Soc. 2002, 124, 8816; d) A. Wakamiya, T. Ide, S.
Yamaguchi, J. Am. Chem. Soc. 2005, 127, 14859; e) W. L. Jia,
M. J. Moran, Y. Y. Yuan, Z. H. Lu, S. Wang, J. Mater. Chem.
2005, 15, 3326; f) K. Parab, K. Venkatasubbaiah, F. Jäkle, J. Am.
Chem. Soc. 2006, 128, 12879.
[3] S. Yamaguchi, K. Tamao, Chem. Lett. 2005, 34, 2.
[4] M. J. S. Dewar, R. Dietz, J. Chem. Soc. 1959, 2728.
[5] a) M. J. S. Dewar, V. P. Kubba, R. Pettit, J. Chem. Soc. 1958,
3073; b) M. J. D. Bosdet, C. A. Jaska, W. E. Piers, T. S. Sorensen,
M. Parvez, Org. Lett. 2007, 9, 1395.
and antiaromaticity). The standard method for NICS calcula-
tions is NICS(1), which is calculated at a distance of 1 above
the plane of the ring in order to minimize the influence from the
s framework while maximizing the contributions from the
p system.
[20] Crystal Data for 5c-iPr: C25H32BN, Mr = 357.33, monoclinic,
space group P21/m, a = 12.295(6), b = 7.242(3), c = 12.806(7) ,
a = 90, b = 114.731(19), g = 908, V= 1035.7(9) 3, Z = 2, 1calcd
=
1.146 gcmÀ3, MoKa radiation, l = 0.71073 , T= 173(2) K, 5716
measured reflections, 3205 unique (Rint = 0.0356), 2191 reflec-
tions with Inet > 2s(Inet), m = 0.064 mmÀ1, min/max transmission
0.9872 and 0.9923, R1(I>2s) = 0.0538, wR2 = 0.1397, GoF =
1.037, 160 parameters, final difference map within + 0.342 and
À0.253 e3. CCDC-636013 contains the supplementary crystal-
lographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
[6] P. Paetzold, C. Stanescu, J. R. Stubenrauch, M. Bienmuller, U.
Englert, Z. Anorg. Allg. Chem. 2004, 630, 2632.
[7] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed.,
Springer, Heidelberg, 1999.
[21] K. Müllen, Helv. Chim. Acta 1978, 61, 2307.
[22] K.-H. Thiele, S. Bambirra, J. Sieler, S. Yelonek, Angew. Chem.
1998, 110, 3016; Angew. Chem. Int. Ed. 1998, 37, 2886.
[23] M. Rabinovitz, A. Minsky, Pure Appl. Chem. 1982, 54, 1005.
[24] This value was obtained under identical experimental conditions
in this work (see the Supporting Information). A value of
À2.54 V has recently been reported in THF: J. Daub, R. Engl, J.
Kurzawa, S. E. Miller, S. Schneider, A. Stockmann, M. R.
Wasielewski, J. Phys. Chem. A 2001, 105, 5655, and references
therein.
[25] SOMO computations for the radical anion of pyrene show a
nodal plane along the same axis, though the hyperfine coupling
can be resolved; see: R. F. C. Claridge, C. M. Kirk, B. M. Peake,
Aust. J. Chem. 1973, 26, 2055, and reference [21].
[26] a) H. Maeda, T. Maeda, K. Mizuno, K. Fujimoto, H. Shimizu, M.
Inouye, Chem. Eur. J. 2006, 12, 824; b) K. S. Foscaneanu, J. C.
Scaiano, Photochem. Photobiol. Sci. 2005, 4, 817; c) Y. Zhang, R.
Yang, F. Liu, K. Li, Anal. Chem. 2004, 76, 7336; d) Y. Fujiwara,
Y. Amao, Sens. Actuators B 2003, 89, 58; e) J. S. Yang, C. S. Lin,
C. Y. Hwang, Org. Lett. 2001, 3, 889; f) B. Bodenant, T. Weil, M.
Businelli-Peurcel, F. Fages, B. Barbe, I. Pianet, M. Laguerre, J.
Org. Chem. 1999, 64, 7034.
[27] a) H. Maeda, T. Maeda, K. Mizuno, K. Fujimoto, H. Shimizu, M.
Inouye, Chem. Eur. J. 2006, 12, 824; b) C. Yao, H. Kraatz, R. P.
Steer, Photochem. Photobiol. Sci. 2005, 4, 191.
[28] J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Inter-
science, New York, 1970.
[29] a) I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic
Molecules, Academic Press, New York, 1971; b) A. Sharma, S. G.
Schulman, Introduction to Fluorescence Spectroscopy, Wiley
Interscience, New York, 1999.
[30] Limited solubility prevented photophysical studies at higher
concentrations.
[8] P. Somerharju, Chem. Phys. Lipids 2002, 116, 57.
[9] D. A. Hoic, J. Robbins-Wolf, W. M. Davis, G. C. Fu, Organo-
metallics 1996, 15, 1315.
[10] When R2 = trimethylsilyl this intermediate is isolable.
[11] Full characterization of 4a-H and 4b-H has not been provided in
the Supporting Information, as analytically pure samples proved
difficult to attain. Complete characterization of the remaining
derivatives 4 has been provided.
[12] V. Mamane, P. Hannen, A. Furstner, Chem. Eur. J. 2004, 10, 4556.
[13] a) I. Ghesner, W. E. Piers, M. Parvez, R. McDonald, Organo-
metallics 2004, 23, 3085; b) J. Pan, J. W. Kampf, A. J. Ashe III,
Org. Lett. 2007, 9, 679.
[14] Crystal data for 5a-H: C14H10BN, Mr = 203.04, monoclinic, space
group P21/c, a = 8.471(6), b = 17.106(13), c = 14.372(6) , a = 90,
b = 102.14(4),
g = 908,
V= 2036(2) 3,
Z = 8,
1calcd =
1.325 gcmÀ3, MoKa radiation, l = 0.71073 , T= 173(2) K, 8518
measured reflections, 4639 unique (Rint = 0.0843), 1661 reflec-
tions with Inet > 2s(Inet), m = 0.076 mmÀ1, min/max transmission
0.9894 and 0.9955, R1(I>2s) = 0.0637, wR2 = 0.1251, GoF =
0.974, 289 parameters, final difference map within + 0.169 and
À0.175 e3. CCDC-636012 contains the supplementary crystal-
lographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
[15] R. Boese, N. Finke, J. Henkelmann, G. Maier, P. Paetzold, H. P.
Reisenauer, G. Schmid, Chem. Ber. 1985, 118, 1644.
[16] X. Fang, H. Yang, J. W. Kampf, M. M. Banaszak Holl, A. J.
Ashe III, Organometallics 2006, 25, 513.
[17] C. A. Jaska, D. J. H. Emslie, M. J. D. Bosdet, W. E. Piers, T. S.
Sorensen, M. Parvez, J. Am. Chem. Soc. 2006, 128, 10885.
[18] A. Camerman, J. Trotter, Acta Crystallogr. 1965, 18, 636.
[19] The NICS method is a measure of the abnormal proton chemical
shift of aromatic molecules by the induced ring current that is
due to cyclic s- or p-electron delocalization, and whose values
can either be negative (suggestive of diatropic ring currents and
[31] Single-crystal emission and excitation spectra of pyrene afforded
some of the early confirmation of excimer formation in solution;
see: B. Stevens, Spectrochim. Acta 1962, 18, 439.
[32] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brꢀdas,
P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
Angew. Chem. Int. Ed. 2007, 46, 4940 –4943
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim