1254
N. Barooah et al. / Inorganic Chemistry Communications 9 (2006) 1251–1254
Fig. 4. The ORTEP diagram of (a) tetra-aqua bis-N-phthaloylglycylglycinato cobalt(II) (5) (b) the N–Hꢀ ꢀ ꢀO interaction leading to b sheet structure (N–
˚
Hꢀ ꢀ ꢀO 3.048 A and 160.37 °).
around the cobalt center (Fig. 4). In this compound the N-
phthaloylglycylglycinato ligands are positioned in trans-
disposition to each other, whereas the four water molecules
are in one plane. It is also interesting to note that the pres-
ence of phthaloyl group on the ligand adopts a b-pleated
sheet structure in the crystal lattice. This complex also
has the structural features that are recently reported for
zinc and cobalt complexes [7].
References
[1] K. Biradha, M. Fujita, in: G.R. Desiraju (Ed.), Perspective in
Supramolecular Chemistry: Crystal Design, Structure and Function,
vol. 7, Wiley, New York, 2003.
[2] (a) D. Braga, J. Chem. Soc. Dalton. Trans. (2000) 3705–3713;
(b) A.J. Blake, N.R. Champness, P. Hubberstey, W.-S. Li, M.A.
Withersby, M. Schroder, Coord. Chem. Rev. 183 (1999) 117–138;
(c) L.-L. Li, K.-J. Lin, C.-J. Ho, C.-P. Sun, H.-D. Yang, Chem.
Commun. (2006) 1286–1288;
Thus, we have demonstrated the supramolecular fea-
tures of functionalised glycine derivatives are a prominent
feature that is to be accounted in their metal complexes.
It is also observed that slight structural variation on glycine
can result into complexes having different implications such
as formation of meta-stable co-crystals, metallo-hybrid
acids, and systems having b-pleated structure, adding fur-
ther insight to the conventional co-ordination chemistry.
(d) L.W. Huang, C.J. Yang, K.J. Lin, Chem. Eur. J. 8 (2002) 396–400.
[3] C. Janiak, J. Chem. Soc. Dalton Trans. (2000) 3885–3896.
[4] J.A. Marsden, J.J. Miller, L.D. Shirtcliff, M.M. Haley, J. Am. Chem.
Soc. 127 (2005) 2464–2476.
[5] (a) C.N.R. Rao, R. Natarajan, R. Vaidyanathan, Angew. Chem. Int.
Ed. Eng. 43 (2004) 1466–1496;
(b) M.H. Zeng, X.L. Feng, X.M. Chen, J. Chem. Soc. Dalton Trans.
(2004) 2217–2223;
(c) S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D.
Williams, Science 283 (1999) 1148–1150;
(d) B. Chen, M. Eddaoudi, T.M. Reineke, J.W. Kampf, M. O’Keeffe,
O.M. Yaghi, J. Am. Chem. Soc. 122 (2000) 11559–11560;
(e) B. Chen, S.T. Eddaoudi, S.T. Hyde, M. O’Keeffe, O.M. Yaghi,
Science 291 (2001) 1021–1023.
Acknowledgements
The authors thank Department of Science and Technol-
ogy, New Delhi, India, for financial assistance. The authors
also thank Dr. A.S. Batsanov for solving the structure of
complex 2.
[6] N. Barooah, R.J. Sarma, A.S. Batsanov, J.B. Baruah, Polyhedron 25
(2006) 17–24.
[7] N. Barooah, R.J. Sarma, J.B. Baruah, Eur. J. Inorg. Chem. (2006)
2942–2946.
[8] K. Deka, N. Barooah, R.J. Sarma, J.B. Baruah, J. Mol. Struct., in
Appendix A. Supplementary materials
[9] (a) R.J. Sarma, C. Tamuly, N. Barooah, J.B. Baruah, J. Mol. Struct.,
The synthetic procedures and crystallographic table for
the compounds reported is available as supplementary
materials. The CIF files of the compounds are deposited
to Cambridge Crystallographic database center and have
the CCDC numbers 603938, 612371, 612372, 613623 and
613624. Supplementary data associated with this article
(b) X.-Q. Lu, L. Zhang, C.-L. Chen, C.-Y. Su, B.-S. Kang, Inorg.
Chim. Acta. 358 (2005) 1771–1776;
(c) X.-Q. Lu, L. Zhang, C.-L. Chen, C.-Y. Su, B.-S. Kang, S.W. Ng,
Acta. Crystal. Sec. E. 59 (2003) 1891–1893;
(d) D.L. Reger, J.D. Elgin, R.F. Semeniuc, P.J. Pellechia, M.D.
Smith, Chem Commun. (2005) 4068–4069.
[10] N. Barooah, R.J. Sarma, A.S. Batsanov, J.B. Baruah, J. Mol. Struct.
721 (2006) 122–130.