Masamune, several reports on the total synthesis6 or the
corresponding seco acid derivative of methynolide7 (Figure 1)
have been published. In continuation of our ongoing research
on the synthesis of polyketide natural products using the
desymmetrization strategy, we report herein the formal and
convergent total synthesis of (+)-methynolide 1.
The retrosynthetic analysis of 1 is depicted in Figure 2. The
key intermediate 3 led us to a convergent approach (Figure 2).
Methynolide can be derived from the intermediate 3, which in
turn can be obtained by coupling of 4 (C1-C7) and 5 (C8-
C11) fragments. Compound 4 can be derived from lactone 7
via triol 6, and vinyl iodide 5 can be obtained from the R,â-
unsaturated ester 9.
Stereoselective Formal Total Synthesis of
(+)-Methynolide
J. S. Yadav,* T. V. Pratap, and V. Rajender
Organic Chemistry DiVision-I, Indian Institute of Chemical
Technology, Hyderabad 500 007, India
ReceiVed March 20, 2007
Synthesis of the fragment 4 (Scheme 1) began with the
reductive cleavage of the bicyclic lactone 7, the synthesis of
which was discussed earlier by the desymmetrization of a
bicyclic olefin.8 Thus treatment of 7 with lithium aluminum
hydride (LAH) in THF at rt furnished triol 10 in 90% yield.
The transformation of 10 into 4 warranted the configuration of
the hydroxyl group at the C3 position to be inverted and the
C5 oxygen to be deoxygenated. Accordingly, the triol 10 was
chemoselectively protected as disilyl ether9 11 using TBSCl and
imidazole in dichloromethane. Attempted inversion of the
secondaryhydroxylgroupin11usingtheMitsunobuprotocol10met
with failure. Alternatively, it was achieved by oxidation followed
by reduction of 11. Thus oxidation of 11 with Dess-Martin
periodinane11 yielded ketone 12 in 92% overall yield from 10.
Subsequently, reduction of 12 with DIBAL-H afforded exclu-
sively alcohol 13, a result of 1,3-syn reduction12 with an overall
inversion of the C3 hydroxyl group. Protection of the hydroxyl
group as its MOM ether13 14 using MOM-Cl and diisopropy-
lethyl amine and treatment of 14 with DDQ14 in a biphasic
mixture of dichloromethane and water (10:1) yielded a second-
ary alcohol 15. Xanthate ester 16 was obtained on treatment of
A highly stereoselective and convergent formal total syn-
thesis of (+)-methynolide is described. The salient features
of this synthesis have been the construction of the C1-C7
and C8-C11fragments via a desymmetrization approach,
Sharpless asymmetric epoxidation of an allyl alcohol,
respectively, and linkage of both the fragments by Nozaki-
Hiyama-Kishi reaction.
Stereocontrolled synthesis of macrolide antibiotics is one of
the most attractive areas in current synthetic organic chemistry,
and various new synthetic methodologies have been developed
en route to the synthesis of such complex molecules.1 The
methymycin family of antibiotics comprises three 12-membered
macrolides isolated from Streptomyces species methymycin,2
neomethymycin, and 10-deoxymethymycin3 that display anti-
biotic activity against Gram-positive bacteria. The structures of
all of these three macrolides were confirmed by the chemical
degradation studies, spectroscopic analysis, and finally by their
total synthesis.4
Efforts toward the total synthesis of methynolide mainly
centered on the construction of Prelog Djerassi lactone unit5 7,
a key degradation product retaining the original four chiral
centers present in the C1 to C7 segment of the methynolide
skeleton. Since the first total synthesis of methynolide by
(6) (a) Nakano, A.; Takimoto, S.; Inanaga, J.; Katsuki, T.; Ouchida, S.;
Inoue, K; Aiga, M.; Okukado, N.; Yamaguchi, M. Chem. Lett. 1979, 1019-
1020. (b) Inanaga, J.; Katsuki, T.; Takimoto, S.; Ouchida, S.; Inoue, K.;
Nakano, A.; Okukado, N.; Yamaguchi, M. Chem. Lett. 1979, 1021-1024.
(c) White, J. D.; Fukuyama, Y. J. Am. Chem. Soc. 1979, 101, 226-228.
(d) Oikawa, Y.; Tanaka, T.; Yonemitsu, O. Tetrahedron Lett. 1986, 27,
3647-3650. (e) Oikawa, Y.; Tanaka, T.; Horita, K.; Noda, I.; Nakajima,
N.; Kakusawa, N.; Hamada, T.; Yonemitsu, O. Chem. Pharm. Bull. 1987,
35, 2184-2195. (f) Oikawa, Y.; Tanaka, T.; Hamada, T.; Yonemitsu, O.
Chem. Pharm. Bull. 1987, 35, 2196-2202. (g) Tanaka, T.; Oikawa, Y.;
Nakajima, N.; Hamada, T.; Yonemitsu, O. Chem. Pharm. Bull. 1987, 35,
2203-2208. (h) Ditrich, K. Liebigs Ann. Chem. 1990, 789-793.
(7) (a) Grieco, P. A.; Ohfune, Y.; Yokoyama, Y.; Owens, W. J. Am.
Chem. Soc. 1979, 101, 4749-4752. (b) Ireland, R. E.; Daub, J. P.; Mandel,
G. S.; Mandel, N. S. J. Org. Chem. 1983, 48, 1312-1325. (c) Vedejs, E.;
Buchanan, R. A.; Watanabe, Y. J. Am. Chem. Soc. 1989, 111, 8430-8438.
(d) Cossy, J.; Bauer, D.; Bellosta, V. Tetrahedron 2002, 58, 5909-5922.
(8) (a) Yadav, J. S.; Srinivas Rao, C.; Chandrasekhar, S.; Rama Rao, A.
V. Tetrahedron Lett. 1995, 36, 7717-7720. (b) Yadav, J. S.; Abraham, S.;
Muralidhar Reddy, M.; Sabitha, G.; Ravi Sankar, A.; Kunwar, A. C.
Tetrahedron Lett. 2001, 42, 4713-4716. (c) Yadav, J. S.; Ahmed, M. M.
Tetrahedron Lett. 2002, 43, 7147-7150. (d) Yadav, J. S.; Srinivas, R.;
Sathaiah, K. Tetrahedron Lett. 2006, 47, 1603-1606.
(1) (a) Masamune, S.; Bates, G. S.; Corcoran, J. W. Angew. Chem., Int.
Ed. Engl. 1977, 16, 585-607. (b) Paterson, I.; Mansuri, M. M. Tetrahedron
1985, 41, 3569-3624. (c) Boeckman, R. H.; Goldstein, M. In The Total
Synthesis of Natural Products; Apsimon, J., Ed.; Wiley: New York, 1988;
Vol. 7, p 1. (d) Tatsuda, K. In Recent Progress in the Chemical Synthesis
of Antibiotics; Lukacs, G., Ohno, M., Eds.; Springer: Berlin, 1990; p 1.
(2) Djerassi, C.; Halpern, O. Tetrahedron 1958, 3, 255-268.
(3) Kinumaki, A.; Suzuki, M. J. Chem. Soc., Chem. Commun. 1972,
744-745.
(4) (a) Masamune, S.; Kim, C. U.; Wilson, K. E.; Spessard, G. O.;
Georghiou, P. E.; Bates, G. S. J. Am. Chem. Soc. 1975, 97, 3512-3513.
(b) Masamune, S.; Yamamoto, H.; Kamata, S.; Fukusawa, A. J. Am. Chem.
Soc. 1975, 97, 3513-3515.
(5) (a) Djerassi, C.; Zderic, J. A. J. Am. Chem. Soc. 1956, 78, 6390-
6395. (b) For a review on the synthesis of Prelog Djerassi lactone, see:
Martin, S. F.; Guinn, D. E. Synthesis 1991, 245-262.
(9) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190-
6191.
(10) Mitsunobu, O. Synthesis 1981, 1-28.
(11) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
(12) Evans, D. A. J. Org. Chem. 1990, 55, 5190-5192.
(13) Stork, G.; Takahashi, J. J. Am. Chem. Soc. 1977, 99, 1275-1276.
(14) Oikawa, Y.; Tanaka, T.; Horita, K.; Yonemitsu, O. Tetrahedron
Lett. 1984, 25, 5397-5400.
10.1021/jo0704762 CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/29/2007
5882
J. Org. Chem. 2007, 72, 5882-5885