L. Wang et al. / Tetrahedron: Asymmetry 21 (2010) 825–830
829
J = 8.8 Hz, 1H), 8.07 (d, J = 7.6 Hz, 1H), 8.02 (d, J = 6.8 Hz, 1H), 7.76 (t,
J = 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 3.65 (t, J = 5.2 Hz, 4H), 2.99 (t,
J = 4.8 Hz, 4H); 13C NMR (100 MHz, CDCl3): 189.5, 186.2, 155.7,
148.0, 129.5, 128.8, 127.2, 126.2, 124.0, 123.4, 121.9, 116.1, 54.7,
28.1; IR (KBr, cmꢀ1): 1717, 1318; HRMS-EI (70 eV) m/z, calcd for
C16H13NO2S 283.0667, found 283.0677; mp: 190.6–192.7 °C.
(s, 3H); 13C NMR (100 MHz, DMSO-d6): 154.1, 144.6, 137.2, 136.7,
127.7, 122.6, 121.7, 121.6, 119.5, 106.8, 73.8, 72.4, 56.1; IR (KBr,
cmꢀ1): 3359; HRMS-EI (70 eV) m/z, calcd for C13H12O3 216.0786,
found 216.0790; mp: 170.1–171.5 °C (Lit.25 172–173 °C).
½
a 2D0
ꢂ
¼ þ3:0 (c 0.38, EtOAc); The enantiomeric excess was deter-
mined by HPLC with a chiral AD-H column, (n-hexane/isopropyl
alcohol = 85:15, UV detection at 254 nm, flow rate = 1.0 mL/min),
retention time: (ꢀ)-cis-3b = 10.86 min, (+)-cis-3b = 12.21 min.
4.2.4. 5-Amino-acenaphthylene-1,2-dione 1e
A
mixture of 5-bromo-acenaphthylene-1,2-dione 1c (2.0 g,
7.7 mmol) and NaN3 (0.9 g, 13.8 mmol) in 30 mL of DMF was stirred
at100 °C for5 min. When thereaction mixture was cooled to ambient
temperature, it was poured into 50 mL of water and a yellow precip-
itatewasseparatedout. Afterfiltration, thefiltercakewasdriedunder
vacuum dryer to give crude 5-azido-acenaphthylene-1,2-dione.
The crude 5-azido-acenaphthylene-1,2-dione (0.8 mg, 3.6 mmol)
in 60 mL of toluene was kept at reflux for 36 h. When the reaction
mixture was cooled to ambient temperature, some brown precipi-
tates were separated out. After filtration, the filter cake was dried
under vacuum dryer. The crude 5-amino-acenaphthylene-1,2-dione
was purified by silica gel column chromatography using CH2Cl2 as
the eluent to give pure 5-amino-acenaphthylene-1,2-dione 1e in
45% yield. 1H NMR (400 MHz, DMSO-d6): 8.45 (d, J = 8.4 Hz, 1H),
7.89 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 6.8 Hz, 1H), 7.64 (t, J = 7.6 Hz,
1H), 7.31 (s, 2H), 6.90 (d, J = 8.0 Hz, 1H); 13C NMR (400 MHz,
DMSO-d6): 191.9, 183.1, 152.5, 148.9, 128.5, 127.6, 126.0, 125.9,
121.5, 118.3, 117.0, 109.6; IR (KBr, cmꢀ1): 3456, 3363, 1592, 1344;
mp >200 °C.
4.3.4. trans-(1S,2S)-5-Methoxy-acenaphthene-1,2-diol trans-3b
1H NMR (400 MHz, DMSO-d6): 7.83 (d, J = 8.4 Hz, 1H), 7.52 (t,
J = 7.6 Hz, 1H), 7.43 (d, J = 7.2 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H),
6.98 (d, J = 7.6 Hz, 1H), 5.75 (d, J = 6.8 Hz, 1H), 5.64 (d, J = 6.8 Hz,
1H), 5.14 (d, J = 6.8 Hz, 1H), 5.10 (d, J = 6.8 Hz, 1H), 3.95 (s, 3H);
13C NMR (100 MHz, DMSO-d6): 157.4, 137.0, 131.0, 127.4, 124.5,
123.8, 123.3, 122.8, 122.2, 103.4, 85.3, 83.5, 56.3; IR (KBr, cmꢀ1):
3296; HRMS-EI (70 eV) m/z, calcd for C13H12O3 216.0786, found
216.0788; mp: 158.5–160.5 °C (Lit.25 155–156 °C). ½a 2D0
¼ ꢀ24:2
ꢂ
(c 0.26, CHCl3). The anantiomeric excess was determined by HPLC
with a chiral AD-H column, (n-hexane/isopropyl alcohol = 90:10,
UV detection at 254 nm, flow rate = 1.0 mL/min), retention time:
(S,S)-trans-3b = 19.50 min, (R,R)-trans-3b = 20.58 min.
4.3.5. cis-5-Bromo-acenaphthene-1,2-diol cis-3c
1H NMR (400 MHz, DMSO-d6): 7.87 (d, J = 7.2 Hz, 1H), 7.82 (d,
J = 8.4 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.59 (d, J = 6.8 Hz, 1H), 7.42
(d, J = 7.2 Hz, 1H), 5.39–5.25 (m, 4H); 13C NMR (100 MHz, DMSO-
d6): 145.2, 144.8, 136.3, 131.3, 129.8, 129.3, 122.7, 122.0, 121.9,
117.6, 72.2, 72.1; IR (KBr, cmꢀ1): 3335; HRMS-EI (70 eV) m/z, calcd
for C12H9BrO2 263.9786, found 263.9783; mp: 180.0–183.2 °C.
4.3. Experimental procedure for 3a–3d
A mixture of dry baker’s yeast (10.0 g) and sucrose (3.0 g) in
water (100 mL) was stirred at 30 °C for 0.5 h. Then the substrate
(100 mg) dissolved in the organic solvent of DMSO (10 mL) was
added to the mixture and vigorous stirring (600 rpm) was contin-
ued at the same temperature (30 °C) for 48 h. After removal of the
baker’s yeast by filtration, the filtrates were extracted with ethyl
acetate (3 ꢁ 100 mL). The separated organic phase was dried over
anhydrous MgSO4 and concentrated under reduced pressure. The
crude products were purified by chromatography on a silica gel
column (CH2Cl2/MeOH = 20:1) to afford the pure 1,2-dihydroxy
product as the white solid.
½
a 2D0
ꢂ
¼ þ3:4 (c 0.38, EtOAc). The anantiomeric excess was deter-
mined by HPLC with a chiral AD-H column, (n-hexane/isopropyl
alcohol = 90:10, UV detection at 254 nm, flow rate = 1.0 mL/min),
retention time: (+)-racemic-cis-3c = 12.34 min, (ꢀ)-racemic-cis-
3c = 14.03 min.
4.3.6. trans-(1S,2S)-Bromo-acenaphthene-1,2-diol trans-3c
1H NMR (400 MHz, DMSO-d6): 7.87 (d, J = 7.6 Hz, 1H), 7.82 (d,
J = 8.0 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.55 (d, J = 6.8 Hz, 1H), 7.38
(d, J = 7.6 Hz, 1H), 6.00 (d, J = 6.0 Hz, 2H), 5.18 (s, 1H), 5.13 (s, 1H);
13C NMR (100 MHz, DMSO-d6): 144.8, 144.5, 136.6, 131.8, 130.4,
129.7, 123.1, 121.7, 121.6, 118.0, 82.6, 82.1. IR (KBr, cmꢀ1): 3333;
HRMS-EI (70 eV) m/z, calcd for C12H9BrO2 263.9786, found
4.3.1. cis-Acenaphthene-1,2-diol cis-3a
1H NMR (400 MHz, DMSO-d6): d 7.77 (d, J = 8.0 Hz, 2H), 7.57 (t,
J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 5.29 (s, 2H); 13C NMR
(100 MHz, DMSO-d6): 149.0, 146.7, 138.7, 128.3, 124.1, 120.8,
72.0; IR (KBr, cmꢀ1): 3333; HRMS-EI (70 eV) m/z, calcd for
C12H10O2 186.0681, found 186.0681; mp: 170.8–172.4 °C (Lit.23
208–209 °C).
263.9783; mp: 165.0–170.2 °C (Lit.26 216–217 °C); ½a 2D0
¼ þ15:1
ꢂ
(c 0.35, EtOAc). The anantiomeric excess was determined by HPLC
with a chiral AD-H column, (n-hexane/isopropyl alcohol = 90:10,
UV detection at 254 nm, flow rate = 1.0 mL /min), retention time:
(S,S)-trans-3c = 12.66 min, (R,R)-trans-3c = 14.52 min.
4.3.7. cis-5-thiomorpholin-acenaphthene-1,2-diol cis-3d
4.3.2. trans-(1S,2S)-Acenaphthene-1,2-diol trans-3a
1H NMR (400 MHz, DMSO-d6): 7.80 (d, J = 8.4 Hz, 1H), 7.55 (t,
J = 6.8 Hz, 1H), 7.45 (d, J = 6.8 Hz, 1H), 7.38 (d, J = 7.2 Hz, 1H),
7.11 (d, J = 7.2 Hz, 1H), 5.28–5.14 (m, 4H), 3.29 (t, J = 4.4 Hz 4H),
2.90 (t, J = 4.4 Hz, 4H); 13C NMR (100 MHz, DMSO-d6): 148.4,
145.0, 139.3, 136.9, 127.5, 125.6, 121.0, 120.8, 120.7, 116.6, 73.1,
72.0, 55.0, 27.7. IR (KBr, cmꢀ1): 3412; HRMS-EI (70 eV) m/z, calcd
for C16H17NO2S 287.0980, found 287.0990; mp: 153.5–154.5 °C.
1H NMR (400 MHz, DMSO-d6): 7.76 (d, J = 8.0 Hz, 2H), 7.57 (t,
J = 7.8 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 5.18 (s, 2H); 13C NMR
(100 MHz, DMSO-d6): 143.8, 135.4, 130.3, 128.3, 123.9, 120.0,
82.4; IR (KBr, cmꢀ1): 3266; HRMS-EI (70 eV) m/z, calcd for
C12H10O2 186.0681, found 186.0683; mp: 153.7–154.6 °C (Lit.24
160–163 °C). ½a 2D0
¼ ꢀ24:1 (c 0.28, CHCl3); The enantiomeric ex-
ꢂ
cess was determined by HPLC with a chiral AD-H column (n-hex-
ane/isopropyl alcohol = 85:15, UV detection at 254 nm, flow
rate = 1.0 mL /min), retention time: (S,S)-trans-3a = 8.06 min,
(R,R)-trans-3a = 10.49 min.
½
a 2D0
ꢂ
¼ þ5:5 (c 0.36, EtOAc). The enantiomeric excess was deter-
mined by HPLC with a chiral AD-H column, (n-hexane/isopropyl
alcohol = 80:20, UV detection at 254 nm, flow rate = 1.0 mL/min),
retention time: (ꢀ)-cis-3d = 15.22 min, (+)-cis-3d = 16.32 min.
4.3.3. cis-5-Methoxy-acenaphthene-1,2-diol cis-3b
4.3.8. trans-(1S,2S)-5-thiomorpholin-acenaphthene-1,2-diol
trans-3d
1H NMR (400 MHz, DMSO-d6): 7.84 (d, J = 8.0 Hz, 1H), 7.52 (t,
J = 7.6 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 6.98
(d, J = 7.6 Hz, 1H), 5.29–5.20 (m, 2H), 5.12 (d, J = 6.8 Hz, 2H), 3.95
1H NMR (400 MHz, DMSO-d6): 7.80 (d, J = 8.4 Hz, 1H), 7.55 (t,
J = 6.8 Hz, 1H), 7.41 (d, J = 6.8 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H),