Hayashi et al.
FIGURE 2. Yields of 5, 33, and 34 vs reaction time.
reported that diamine 25 in combined use with 2,4-dinitroben-
zenesulfonic acid is an effective organocatalyst of the enantio-
selective intermolecular aldol reaction.
Next, the effect of solvent was investigated. As the dehydra-
tion reaction is not so fast when the CF3CO2H salt of 25 is
employed, the aldol product could be isolated. For this screening,
we quenched the reaction after a predetermined time and isolated
both aldol 34 and dehydrated product 33. Their yields and
enantioselectivities were determined with the results sum-
marized in Table 2. The aldol product 34 was isolated as a
single isomer (vide infra). The enantiomeric excess of aldol
product 34 is a little lower than that of dehydrated product 33
except for the reaction in Et2O. When Et2O, MeOH, and
CH2Cl2 were used as solvents, the enantioselectivity was
moderate. In polar solvents such as DMF and NMP, better
enantioselectivity was achieved. Especially good results were
obtained in NMP. The aldol reaction is fast, and within 1.5 h,
the aldol product 34 and dehydrated product 33 were obtained
in 35 and 42% yield with 76 and 85% ee, respectively (Table
2, entry 6). When the reaction was performed for a long time
(48 h), dehydration proceeded completely, affording 33 in
excellent yield (96%) with good enantioselectivity (85% ee,
Table 2, entry 7).
The relationship between yield and reaction time was
investigated by monitoring the yield and enantiomeric excess
of aldol 34 and dehydrated product 33 at 0.5, 1, 2, 4, 6.5, 18,
21, and 24 h with the results summarized in Figure 2.
The yield of aldol product 34 increases at first and then
gradually decreases as the amount of dehydrated product
increases. The optical purities of the aldol product 34 and
dehydrated product 33 remained almost the same throughout
the reaction. These results indicate that it is probably not the
case that the other diastereomer of the aldol reaction is also
formed but dehydrated instantly but rather that the aldol prod-
uct 34 was obtained selectively and that this dehydrated to
give 33. No kinetic discrimination occurs at the dehydration
stage.
(10) (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2000, 122, 4243. (b) Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2000, 122, 9874. (c) Paras, N. A.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2001, 123, 4370. (d) Austin, J. F.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2002, 124, 1172. (e) Northrup, A. B.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2002, 124, 2458. (f) Paras, N. A.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2002, 124, 7894. (g) Brown, S. P.; Goodwin, N.
C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 1192. (h) Brochu,
M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126,
4108. (i) Mangion, I. K.; Northrup, A. B.; MacMillan, D. W. C. Angew.
Chem., Int. Ed. 2004, 43, 6722. (j) Ouellet, S. G.; Tuttle, J. B.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2005, 127, 32. (k) Huang, Y.; Walji, A. M.;
Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051.
(l) Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2006, 128, 9328. (m) Lee, S.; MacMillan, D. W. C. Tetrahedron 2006, 62,
11413. (n) Tuttle, J. B.; Ouellet, S. G.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2006, 128, 12662. (o) For review, see: Lelais, G.; MacMillan, D. W.
C. Aldrichim. Acta 2006, 39, 79.
(11) (a) Harmata, M.; Ghosh, S. K.; Hong, X.; Wacharasindhu, S.;
Kirchhoefer, P. J. Am. Chem. Soc. 2003, 125, 2058. (b) Yang, J. W.;
Fonseca, M. T. H.; Vignola, N.; List, B. Angew. Chem., Int. Ed. 2005, 44,
108. (c) Yang, J. W.; Fonseca, M. T. H.; List, B. J. Am. Chem. Soc. 2005,
127, 15036.
(12) (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 794. (b) Marigo, M.; Fielenbach, D.;
Braunton, A.; Kjæsgaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005,
44, 3703. (c) Marigo, M.; Franze´n, J.; Poulsen, T. B.; Zhuang, W.;
Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964. (d) Marigo, M.;
Schulte, T.; Franze´n, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127,
15710. (e) Zhuang, W.; Marigo, M.; Jørgensen, K. A. Org. Biomol. Chem.
2005, 3, 3883. (f) Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.;
Kjæsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296. (g)
Brandau, S.; Landa, A.; Franze´n, J.; Marigo, M.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2006, 45, 4305. (h) Brandau, S.; Maerten, E.; Jørgensen,
K. A. J. Am. Chem. Soc. 2006, 128, 14986. (i) Carlone, A.; Marigo, M.;
North, C.; Landa, A.; Jørgensen, K. A. Chem. Commun. 2006, 4928. (j)
Bertelsen, S.; Diner, P.; Johansen, R. L.; Jørgensen, K. A. J. Am. Chem.
Soc. 2007, 129, 1536. (k) Bertelsen, S.; Marigo, M.; Brandes, S.; Diner,
P.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129, 12973.
Determination of the Absolute Configuration. The absolute
configuration was determined by chiral HPLC comparison with
an authentic sample prepared as shown in Scheme 2.
The Wieland-Miecher ketone 35 of 73% ee was reduced
with NaBH4 in the presence of CeCl3,17 followed by treatment
with BnBr and NaH, to afford dibenzyl ether 37. Ozonolysis
and then reduction with SmI218 gave keto aldehyde 39. Removal
of the Bn protecting group, followed by an intramolecular aldol
reaction using pyrrolidine, gave bicyclo[4.3.0]nonene derivative
41. Oxidation of alcohol 41 gave ketone 33. HPLC comparison
of this authentic sample with the dehydrated product 33 prepared
using diamine 25‚TFA showed that the two compounds have
the same absolute stereochemistry.
(13) (a) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem.,
Int. Ed. 2005, 44, 4212. (b) Gotoh, H.; Masui, R.; Ogino, H.; Shoji, M.;
Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 6853. (c) Hayashi, Y.; Okano,
T.; Aratake, S.; Hazelard, D. Angew. Chem., Int. Ed. 2007, 46, 4922.
The relative stereochemistry of the aldol product 34 was
determined by the NOEs observed in the compounds 43 (Figure
6496 J. Org. Chem., Vol. 72, No. 17, 2007