4116
W. Li et al. / Bioorg. Med. Chem. Lett. 17 (2007) 4113–4117
chain length increased, potency increased, as well as tox-
icity as measured on fibroblast cells except when the
acetyl amino group was substituted on the phenyl ring
(compounds 14–17). Both C15 and C16 chains with this
substitution displayed both high potency and high selec-
tivity against cancer cells, with an IC50 for melanoma
cells as low as 600 nM (compound 17). Further chain
length increases, however, reduced potency and selectiv-
ity. At a chain length of C18 (compound 19), the IC50
value was higher than 10 lM for all three cell lines.
Interestingly, adding either a cis- or trans-double bond
in the C18 side chain restored potency dramatically
(compounds 20Z and 20E), demonstrating that both
length and composition of the side chain are critical
for their activity. There is no significant difference in
their activity between the cis- and trans-isomers.
compounds are identified, pure optical isomers will be
separated by preparative HPLC for both in vitro and
in vivo animal testing.
Acknowledgments
This research is supported by funds from Department of
Pharmaceutical Sciences, College of Pharmacy, Univer-
sity of Tennessee Health Science Center (W.L.), and the
Van Vleet Endowed Professorship (D.D.M.). We thank
Dr. David L. Armbruster for editorial assistance.
References and notes
1. Jemal, A.; Tiwari, R. C.; Murray, T.; Ghafoor, A.;
Samuels, A.; Ward, E.; Feuer, E. J.; Thun, M. J. CA
Cancer J. Clin. 2004, 54, 8.
2. Carlson, J. A.; Ross, J. S.; Slominski, A.; Linette, G.;
Mysliborski, J.; Hill, J.; Mihm, M., Jr. J. Am. Acad.
Dermatol. 2005, 52, 743.
3. Buzaid, A. C.; Anderson, C. M. Curr. Oncol. Rep. 2000, 2,
322.
4. Anderson, C. M.; Buzaid, A. C.; Legha, S. S. Oncology
(Williston Park) 1995, 9, 1149.
Removing the acetyl amino group on the phenyl ring
(compounds 21 and 22) resulted in the loss of selectiv-
ity, although potency was similar to those with this
substitution (compounds 15 and 17). Replacing the al-
kyl chain with a methoxyl group completely abolished
potency (compound 23). Changing the chirality from
an R to S configuration at the C4 position on the
thiazolidine ring did not substantially affect either
potency or selectivity (compound 4 vs 24 and com-
pound 17 vs 25). Selectivity has a strong dependence
on the substitutions in the phenyl ring. For example,
with a C12 chain, potency is similar for all the substi-
tutions we studied (compounds 3, 7, 11, 14, and 26).
However, selectivity improves dramatically when prop-
er substitutions are present (compound 17 vs com-
pounds 5, 9, 13, 22, and 27).
5. Serrone, L.; Zeuli, M.; Sega, F. M.; Cognetti, F. J. Exp.
Clin. Cancer Res. 2000, 19, 21.
6. Lawson, D. H. Cancer Control 2005, 12, 236.
7. Bajetta, E.; Di Leo, A.; Zampino, M. G.; Sertoli, M. R.;
Comella, G.; Barduagni, M.; Giannotti, B.; Queirolo, P.;
Tribbia, G.; Bernengo, M. G. J. Clin. Oncol. 1994, 12,
806.
8. Thomson, D. B.; Adena, M.; McLeod, G. R.; Hersey, P.;
Gill, P. G.; Coates, A. S.; Olver, I. N.; Kefford, R. F.;
Lowenthal, R. M.; Beadle, G. F. Melanoma Res. 1993, 3,
133.
9. Young, A. M.; Marsden, J.; Goodman, A.; Burton, A.;
Dunn, J. A. Clin. Oncol. (R. Coll. Radiol.) 2001, 13,
458.
10. Chang, J.; Atkinson, H.; A’Hern, R.; Lorentzos, A.; Gore,
M. E. Eur. J. Cancer 1994, A, 2093.
When the amino group in the thiazolidine ring is
substituted (compound 30) or a double bond is intro-
duced (compounds 28 and 29), the resulting com-
pounds are largely inactive with IC50 values above
20 lM. We also tested the intermediate compound in
which the amino group is protected by a Boc group,
and that compound is inactive also (data not shown).
Furthermore, when we removed the aliphatic chain
and the amino group by synthesizing a dimer, we
obtained an inactive compound (compound 31). These
results clearly demonstrate the importance of the
amino group in the thiazolidine ring.
11. Fletcher, W. S.; Daniels, D. S.; Sondak, V. K.; Dana, B.;
Townsend, R.; Hynes, H. E.; Hutchins, L. F.; Pancoast, J.
R. Am. J. Clin. Oncol. 1993, 16, 359.
12. Madajewicz, S.; West, C. R.; Park, H. C.; Ghoorah, J.;
Avellanosa, A. M.; Takita, H.; Karakousis, C.; Vincent,
R.; Caracandas, J.; Jennings, E. Cancer 1981, 47, 653.
13. Avril, M. F.; Aamdal, S.; Grob, J. J.; Hauschild, A.;
Mohr, P.; Bonerandi, J. J.; Weichenthal, M.; Neuber, K.;
Bieber, T.; Gilde, K.; Guillem Porta, V.; Fra, J.; Bonnet-
erre, J.; Saiag, P.; Kamanabrou, D.; Pehamberger, H.;
Sufliarsky, J.; Gonzalez Larriba, J. L.; Scherrer, A.; Menu,
Y. J. Clin. Oncol. 2004, 22, 1118.
14. Franciosi, V.; Cocconi, G.; Michiara, M.; Di Costanzo,
F.; Fosser, V.; Tonato, M.; Carlini, P.; Boni, C.; Di Sarra,
S. Cancer 1999, 85, 1599.
15. Middleton, M. R.; Lorigan, P.; Owen, J.; Ashcroft, L.;
Lee, S. M.; Harper, P.; Thatcher, N. Br. J. Cancer 2000,
82, 1158.
Not surprising, DTIC was inactive (IC50 > 100 lM) in
our in vitro assay due to lack of bioactivation.27 Recent
clinical trials indicated that sorafenib has promising ef-
fect against melanoma, and it has very low toxicity.28
Our in vitro assay indicated that compound 17 was more
potent and selective against melanoma cells than sorafe-
nib, as indicated by the ratio of its IC50 values for fibro-
blast cells over melanoma cells (10–20 for 17 vs 3–4 for
sorafenib).
16. Mandara, M.; Nortilli, R.; Sava, T.; Cetto, G. L. Expert
Rev. Anticancer Ther. 2006, 6, 121.
In conclusion, we have synthesized novel analogs of
thiazolidine compounds based on initial studies. When
compared with existing anticancer drugs, our com-
pounds were more potent and selective. Further optimi-
zation of the structure to improve their activities is
currently in progress. Once highly potent and selective
17. Chapman, P. B.; Einhorn, L. H.; Meyers, M. L.; Saxman,
S.; Destro, A. N.; Panageas, K. S.; Begg, C. B.; Agarwala,
S. S.; Schuchter, L. M.; Ernstoff, M. S.; Houghton, A. N.;
Kirkwood, J. M. J. Clin. Oncol. 1999, 17, 2745.
18. Eton, O.; Legha, S. S.; Bedikian, A. Y.; Lee, J. J.; Buzaid,
A. C.; Hodges, C.; Ring, S. E.; Papadopoulos, N. E.;