D. Gre´e, R. Gre´e / Tetrahedron Letters 48 (2007) 5435–5438
5437
´
´
8. Prakesch, M.; Gree, D.; Gree, R. Acc. Chem. Res. 2002,
F
F
´
´
35, 175; Filmon, J.; Gree, D.; Gree, R. J. Fluorine Chem.
2001, 107, 271; Kerouredan, E.; Prakesch, M.; Gree, D.;
Gree, R. Lett. Org. Chem. 2004, 1, 87; Manthati, V.; Gree,
D.; Gree, R. Eur. J. Org. Chem. 2005, 3825; Manthati, V.
L.; Murthy, A. S. K.; Caijo, F.; Drouin, D.; Lesot, P.;
Gree, D.; Gree, R. Tetrahedron: Asymmetry 2006, 17,
2306, and references cited therein.
Me
Me
´
BnN
N
N
BnN3
´
´
+
N
Z
´
Z
N
N
(45°C, 3a)
(60°C, 3b)
Bn
(-)-9a
Z = COPh
Z = CO2Et
(-)-10a
´
´
(+)-9b
(-)-10b
(+)-3
F
F
9. For another recent synthesis of propargylic fluorides see:
Carroll, L.; Pacheco, Ma. C.; Garcia, L.; Gouverneur, V.
Chem. Commun. 2006, 4113.
Me
N
Me
Me
EtNO2
O
+
10. Obrecht, D. Helv. Chim. Acta 1989, 72, 447.
N
PhNCO,
Z
Z
O
11. Main spectroscopical data for propargylic fluorides.
Compound (+)-3a: 1H NMR (300 MHz, CDCl3) 8.20–
8.13 (m, 2H); 7.69–7.49 (m, 3H); 5.50 (dq, 1H, JHF = 47.8,
J = 6.6); 1.76 (dd, 3H, JHF = 22.6, J = 6.6). 13C NMR
(75 MHz, CDCl3) 177.1 (d, J = 2.6); 136.1, 134.6, 129.6,
128.7, 89.9 (d, J = 26.0); 84.2 (d, J = 9.7); 78.5 (d,
J = 168.8); 21.7 (d, J = 24.2). 19F NMR (282 MHz,
Et3N, 50°C
Toluene
Me
(+)-11a
Z = COPh
Z = CO2Et
(-)-12a
(+)-11b
12b
Scheme 4. Azide and nitrile oxide cycloadditions on optically active
propargylic fluorides.
21
CDCl3) ꢀ170.35 (dq, J = 47.8, J = 22.6). ½aꢁD +4.2 (c
0.54, CHCl3). Compound (+)-3b: 1H NMR (300 MHz,
CDCl3) 5.33 (dq, 1H, JHF = 47.7, J = 6.7); 4.27 (q, 2H,
J = 7.2); 1.66 (dd, 3H, JHF = 22.7, J = 6.7); 1.33 (t, 3H,
J = 7.2). 13C NMR (75 MHz, CDCl3) 152.8 (d, J = 3.0);
83.2 (d, J = 26.2); 78.6 (d, J = 9.7); 78.2 (d, J = 169.3);
62.4; 21.5 (d, J = 24.2); 13.9. 19F NMR (282 MHz,
In conclusion, these preliminary results clearly estab-
lished that benzylic fluorides, as well as the correspond-
ing five-membered heterocycles, are accessible in high
ee’s by using this new route since very little, if any, rac-
emisation occurred under such reaction conditions. This
strategy will be used for the preparation of fluorinated
analogues of bioactive molecules. Furthermore, the
extension to other propargylic fluorides and to other
cycloadditions and cyclo-condensations are under active
study in our group.
21
CDCl3) ꢀ172.02 (dq, J = 47.9, J = 22.7). ½aꢁD +17.9 (c
1
0.54, CHCl3). Compound 3c: H NMR (300 MHz, C6D6)
7.39–7.02 (m, 5H); 6.02 (s, 1H); 4.56 (dq, 1H, JHF = 47.7,
J = 6.7); 3.17 (s, 3H); 0.95 (dd, 3H, JHF = 22.5, J = 6.7).
13C NMR (75 MHz, C6D6) 168.0; 152.0 (d, J = 2.9); 133.1;
129.4; 128.8; 128.1; 85.1 (d, J = 26.4); 78.5 (d, J = 9.7);
78.1 (d, J = 170.1); 52.1; 20.7 (d, J = 24.0). 19F NMR
(282 MHz, CDCl3) ꢀ172.18 (the signal for the other
diastereoisomer is at ꢀ172.16).
References and notes
´
´
12. Gree, D.; Madiot, V.; Gree, R. Tetrahedron Lett. 1999, 40,
´
´
6399; Madiot, V.; Lesot, P.; Gree, D.; Courtieu, J.; Gree,
R. Chem. Commun. 2000, 169.
1. Kitazume, T.; Yamazaki, T. Experimental Methods in
Organic Fluorine Chemistry; Gordon and Breach Science
Publishers: Tokyo, 1998; Hudlicky, M.; Pavlath, A. E.
Chemistry of Organic Fluorine Compounds II: A Critical
Review; ACS Monograph 187; ACS: Washington, DC,
1995; Organofluorine Chemistry: Principles and Commer-
cial Applications; Banks, R. E., Smart, B. E., Tatlow, J. C.,
Eds.; Plenum: New York, 1994, and references cited
therein.
2. Ojima, I.; McCarthy, J. R.; Welch, J. T. Biomedical
Frontiers in Fluorine Chemistry, ACS Symposium Series
639. ACS: Washington, DC, 1996; Welch, J. T.; Eswara-
krishnan, S. Fluorine in Bioorganic Chemistry; Wiley
Interscience: New York, 1991; Welch, J. T. Tetrahedron
1987, 43, 3123, and references cited therein.
13. Main spectroscopical data for benzylic fluorides: Com-
pound (ꢀ)-6a: 1H NMR (300 MHz, CDCl3) 8.00–7.45 (m,
5H); 7.48 (s, 1H); 7.16 (s, 1H); 5.90 (dq, 1H, JHF = 47.6;
J = 6.3); 2.39 (s, 3H); 2.29 (s, 3H); 1.69 (dd, 3H,
JHF = 24.0, J = 6.3). 13C NMR (75 MHz, CDCl3) 197.6;
140.4; 139.8 (d, J = 19.3); 138.0; 135.6 (d, J = 1.7); 133.5
(d, J = 4.8); 133.0; 130.5; 130.2; 128.4; 127.0 (d, J = 9.0);
88.5 (d, J = 165.4); 23.8 (d, J = 25.6); 20.0; 19.4. 19F
NMR (282 MHz, CDCl3) ꢀ167.26 (dq, J = 47.8,
21
J = 23.9). ½aꢁD ꢀ87.8 (c 0.64, CHCl3). Compound (ꢀ)-
1
8a: H NMR (300 MHz, CDCl3) 7.82–7.40 (m, 5H); 7.22
(s, 1H); 6.90 (s, 1H); 5.95 (dq, 1H; JHF = 47.5, J = 6.2);
4.02 (s, 3H); 3.81 (s, 3H); 1.69 (dd, 3H, JHF = 24.0,
J = 6.2). 13C NMR (75 MHz, CDCl3) 196.5; 151.6; 147.3
(d, J = 1.7); 138.1; 136.8 (d, J = 19.5); 133.0; 130.2; 128.5;
127.9 (d, J = 4.8); 112.7; 108.4 (d, J = 10.3); 88.5 (d,
J = 165.7); 56.1 (2C); 24.0 (d, J = 25.8). 19F NMR
(282 MHz, CDCl3) ꢀ166.46 (dq, J = 47.5, J = 24.0).
´
3. Sai Krishna Murthy, A.; Tardivel, R.; Gree, R. Product
Subclass 6: Benzylic Fluorides, Science of Synthesis. Georg
Thieme Verlag, 2006; p 295.
´
´
4. Prakesch, M.; Gree, D.; Gree, R. Asymmetric Synthesis of
Monofluorinated Compounds having the Fluorine Atom
Vicinal to p-Systems. In Fluorine Containing Synthons;
Soloshonok, V. A., Ed.; ACS Publications Division and
Oxford University Press: Washington, DC, 2005; p 173.
5. Fritz-Langhals, E. Tetrahedron Lett. 1994, 35, 1581; Fritz-
Langhals, E. Tetrahedron: Asymmetry 1994, 5, 981.
21
½aꢁD ꢀ60.8 (c 0.74, CHCl3). Compound (+)-6b: 1H
NMR (300 MHz, CDCl3): 7.75 (s, 1H); 7.46 (s, 1H);
6.43 (dq, 1H, JHF = 48.6, J = 6.2); 4.36 (q, 2H, J = 7.1);
2.35 (s, 3H); 2.31 (s, 3H); 1.65 (dd, 3H, JHF = 24.3,
J = 6.2); 1.41 (t, 3H, J = 7.1). 13C NMR (75 MHz,
CDCl3) 166.7 (d, J = 0.7); 142.1 (d, J = 19.2); 142.0 (d,
J = 1.0); 135.8 (d, J = 1.4); 131.4; 126.5 (d, J = 13.0);
124.4 (d, J = 4.5); 88.7 (d, J = 165.1); 60.8; 23.7 (d,
J = 25.4); 20.0; 19.3; 14.3. 19F NMR (282 MHz, CDCl3)
6. Paulsen, H.; Antons, S.; Brandes, A.; Lo¨gers, M.; Muller,
¨
S. N.; Naab, P.; Schmeck, C.; Schneider, S.; Stoltefuss, J.
Angew. Chem., Int. Ed. 1999, 38, 3373.
7. For recent reviews on asymmetric fluorinations, including
electrophilic fluorinations, see: Ma, J.-A.; Cahard, D.
Chem. Rev. 2004, 104, 6119; Hamashima, Y.; Sodeoka, M.
Synlett 2006, 1467; Bobbio, C.; Gouverneur, V. Org.
Biomol. Chem. 2006, 4, 2065, and references cited therein.
21
ꢀ170.95 (dq, J = 48.6, J = 24.3). ½aꢁD +22.4 (c 0.32,
CHCl3).
14. Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82,
5339.