R,â-unsaturated carbonyl compounds to form cyclopentenes,11
e.g., this process has been applied to natural product
synthesis12 and an enantioselective variant of the reaction
has been developed;13 in addition, thorough mechanistic
studies have been reported by Yu and co-workers and by
us.14 Unfortunately, unlike the [3 + 2] cycloadditions of
allenoates with imines to form dihydropyrroles,15 intermo-
lecular annulations between allenoates and alkenes generally
suffer from the formation of a mixture of regioisomeric
cyclopentenes. For example, Lu’s original report indicated
that the [3 + 2] annulation between ethyl allenoate and
methyl acrylate furnished a 4:1 mixture of regioisomeric
cyclopentenes, favoring R-addition of the phosphonium
dienolate intermediate to the acrylate in a Michael-type
manner.11a In contrast, in Fu’s asymmetric phosphine ca-
talysis of allenes with â-substituted enones to form cyclo-
pentenes, the preference for R-addition of the allenoates to
activated (non-â-substituted) alkenes was reversed to
γ-addition.13c
For many C-C bond-forming processes, exclusive regi-
oselectivity is achieved when the reactions are performed
intramolecularly.16 We sought to apply this principle to an
intramolecular variant of the allene/alkene [3 + 2] cycload-
dition of substrate 1a (eq 1). Compound 1a was synthesized
from salicylaldehyde through a Wittig reaction17 followed
by coupling with 3-butynoic acid under the influence of
Mukaiyama’s reagent;18,19 presumably, the initial 3-butynoate
product isomerized to the allenoate under the coupling
reaction conditions.20 Treatment of 1a with 20 mol % of
tributylphosphine in THF at room temperature for 6 h
produced 2a in 96% isolated yield as a single diastereoiso-
mer.21 Thus, this catalytic reaction provided a tricyclic
dihydrocoumarin structure directly from a cinnamyl allenoate
through a regioselective annulation process.
This reaction proved to be effective for transforming
various other commercially available salicylaldehyde deriva-
tives into cyclopentene-fused dihydrocoumarins (Table 1).
Table 1. Syntheses of Cyclopentene-Fused Dihydrocoumarins
2a
entry
R (1)
H (1a)
3-methyl (1b)
3-methoxy (1c)
4-methoxy (1d)
5-methoxy (1e)
5-fluoro (1f)
yield (%)b product (2) yieldc (%)
1
2
3
4
5
6
7
8
72
64
77
71
73
45
38
45
2a
2b
2c
2d
2e
2f
96
98
74
94
70
91
93
(10) For recent examples, see: (a) Kumar, K.; Kapur, A.; Ishar, M. P.
S. Org. Lett. 2000, 2, 787. (b) Kumar, K.; Kapoor, R.; Kapur, A.; Ishar, M.
P. S. Org. Lett. 2000, 2, 2023. (c) Ung, A. T.; Schafer, K.; Lindsay, K. B.;
Pyne, S. T.; Amornraksa, K.; Wouters, R.; Van der Linden, I.; Biesmans,
I.; Lesage, A. S. J.; Skelton, B. W.; White, A. H. J. Org. Chem. 2002, 67,
227. (d) Liu, B.; Davis, R.; Joshi, B.; Reynolds, D. W. J. Org. Chem. 2002,
67, 4595. (e) Lu, C.; Lu, X. Org. Lett. 2002, 4, 4677. (f) Kuroda, H.; Tomita,
I.; Endo, T. Org. Lett. 2003, 5, 129. (g) Jung, C.-K.; Wang, J.-C.; Krische,
M. J. J. Am. Chem. Soc. 2004, 126, 4118. (h) Du, Y.; Feng, J.; Lu, X. Org.
Lett. 2005, 7, 1987. (i) Zhao, G.-L.; Min, S. Org. Biomol. Chem. 2005, 3,
3686. (j) Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234. (k)
Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Org. Lett. 2006, 8, 2213.
(11) (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906. (b) Shu, L.-
H.; Sun, W.-Q.; Zhang, D.-W.; Wu, S.-H.; Wu, H.-M.; Xu, J.-F.; Lao, X.-
F. Chem. Commun. 1997, 79. (c) O’Donovan, B. F.; Hitchcock, P. B.;
Meidine, M. F.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Chem. Commun.
1997, 81. (d) Xu, Z.; Lu, X. Tetrahedron Lett. 1999, 40, 549. (e) Ung, A.
T.; Schafer, K.; Lindsay, K. B.; Pyne, S. G.; Amornraksa, K.; Wouters, R.;
Van der Linden, I.; Biesmans, I.; Lesage, A. S. J.; Skelton, B. W.; White,
A. H. J. Org. Chem. 2002, 67, 227. (f) Du, Y.; Lu, X.; Yu, Y. J. Org.
Chem. 2002, 67, 8901. (g) Lu, X.; Lu, Z.; Zhang, X. Tetrahedron 2006,
62, 457.
(12) (a) Du, Y.; Lu, X. J. Org. Chem. 2003, 68, 6463. (b) Wang, J.-C.;
Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 5855. (c) Pham, T. Q.;
Pyne, S. G.; Skelton, B. W.; White, A. H. J. Org. Chem. 2005, 70, 6369.
(13) (a) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J.
Am. Chem. Soc. 1997, 119, 3836. (b) Pakulski, Z.; Demchuk, O. L.; Frelek,
J.; Luboradzki, R.; Pietrusiewicz, K. M. Eur. J. Org. Chem. 2004, 3913.
(c) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426. (d)
Scherer, A.; Gladysz, J. A. Tetrahedron Lett. 2006, 47, 6335. (e) Jean, L.;
Marinetti, A. Tetrahedron Lett. 2006, 47, 2141. (f) Wallace, D. J.; Sidda,
R. L.; Reamer, R. A. J. Org. Chem. 2007, 72, 1051.
5-bromo (1g)
5-nitro (1h)
2g
2h
9d
a See the Supporting Information for details. b Isolated yield for the
formation of 1. c Isolated yield for the formation of 2. d The allenoate
hydrolyzed to form the 2-hydroxycinnamate; the resulting phenol was added
to the starting cinnamyl allenoate at the â-carbon atom in 81% yield.
Both electron-withdrawing and -donating substituents on the
benzene ring were compatible with the reaction conditions
(entries 1-7). A substrate containing a nitro substituent
provided the lowest product yield (entry 8); this result is
consistent with our previous findings for [4 + 2] allenoate/
arylimine annulations.8a
Next, we turned our attention to establishing the role
played by the activating substituent on the alkene moiety.
Although 2-(2-phenylsulfonyl)styrenyl allenoate 1i readily
(19) Use of the common (peptide) coupling reagents [DCC, TCT, Hf-
(IV) salts, HBTU, HATU, and PyBroP] failed to provide the allenoate
product. Presumably, the product allenoate is susceptible to nucleophilic
attack by either a base present in the reaction medium or the byproducts
derived from the coupling reagents. See the Supporting Information for
details regarding the isolation and characterization of the product of
N-hydroxybenzotriazole addition to the allenoate when using HBTU.
(20) Eglinton, G.; Jones, E. R. H.; Mansfield, G. H.; Whiting, M. C. J.
Chem. Soc. 1954, 3197.
(14) (a) Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.;
Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470. (b) Reference
8g.
(15) (a) Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 3461. (b) Xu, Z.;
Lu, X. J. Org. Chem. 1998, 63, 5031. (c) 8e.
(16) For an example of γ-selective intramolecular alkyne/alkene [3 +
2] cycloaddition, see: Wang, J.-C.; Ng, S.-S.; Krische, M. J. J. Am. Chem.
Soc. 2003, 125, 3682.
(17) Bunce, R. A.; Schilling, C. L. Tetrahedron 1997, 53, 9477.
(18) Mukaiyama, T.; Usui, M.; Shimada, E. Chem. Lett. 1975, 1045.
(21) The connectivity and relative stereochemistry of this compound were
assigned through NMR spectroscopic analyses. See the Supporting Informa-
tion for details.
3070
Org. Lett., Vol. 9, No. 16, 2007