Table 4 Crystallographic data summary for complexes 1–6a
1
2
3
4
5
6
Empirical formula
Formula weight
Space group
a/A
b/A
c/A
a/1
C
13H13Fe2NO6S2 C14H15Fe2NO6S2 C15H17Fe2NO6S2 C17H31Fe2NO4P2S2 C18H33Fe2NO4P2S2 C19H35Fe2NO4P2S2
455.06
P2(1)/n
7.7471(9)
11.7596(15)
19.604(2)
90
90.778(5)
90
1785.8(4)
4
1.693
469.09
P2(1)/c
9.6577(2)
13.08730(10)
14.9696(2)
90
92.7930(10)
90
1889.81(5)
4
1.649
483.12
P2(1)/n
10.604(3)
12.035(4)
15.428(4)
90
92.439(6)
90
1967.2(10)
4
1.631
551.19
ꢀ
P1
565.22
P2(1)/c
22.819(5)
10.912(2)
23.588(5)
90
118.581(2)
90
5158.0(19)
8
1.456
579.24
P2(1)/n
11.0584(6)
22.4454(10)
11.6423(6)
90
113.615(2)
90
2647.7(2)
4
1.453
12.4237(5)
14.1988(6)
14.6021(6)
98.3330(10)
91.9110(10)
94.4710(10)
2538.28(18)
8
b/1
g/1
V/A3
Z
r
calc/g cmÀ3
1.442
l(Mo-Ka)/A
0.71073
293(2)
1.885
0.0480
0.0928
0.71073
293(2)
1.784
0.0521
0.1259
0.71073
293(2)
1.717
0.0310
0.0894
0.71073
293(2)
1.454
0.0785
0.2815
0.71073
293(2)
1.433
0.0568
0.0973
0.71073
293(2)
1.398
0.0410
0.1335
b
T/K
m/mmÀ1
Rb
wRc
a
P
CCDC reference numbers 622703–622708. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b616236c. R = ||Fo|
1
P
P
P
À |Fc||/ |Fo|. wR = [ w(|Fo| À |Fc|)2/ wFo ]2.
c
2
heptane to give 6 (0.144 g, 50%) as dark red crystals (Found:
C, 39.35; H, 6.10; N, 2.49. Calc. for C19H35Fe2S2O4NP2: C,
39.40; H, 6.09; N, 2.42%); dH (500 MHz; CDCl3; Me4Si):
3.129 (4H, s, 2CH2S), 2.426 (1H, s, 13-H), 1.700–0.866 (12H,
m, 6CH2), 1.488 (18H, s, 2PMe3); dP (202 MHz; CDCl3;
Me4Si) 24.085 (PMe3); m/z 580.0 (100%, M + H+).
Conclusions
Selecting an appropriate ADT bridge is important for obtain-
ing a good mimic of the active site of [FeFe]-hydrogenases,
which can reduce protons to H2 at a relatively high potential.
The electronic effect of the ADT is a key factor on the redox
properties of the model diiron complex because the bridge
influences the H2 production mechanism.
X-Ray structure determination of complexes 1–6. Single
crystals of complexes 2 and 4 were mounted on a Siemens
Smart CCD diffractometer with Mo-Ka radiation (l =
0.71073 A). Single crystals of complexes 1, 3, 5 and 6 were
performed on a Mercury-CCD diffractometer equipped with
graphite-monochromated Mo-Ka radiation (l = 0.71073 A).
All data were collected at 293(2) K using a o-2y scanning
mode. An empirical absorption correction was made of the
multi-scan type. The structure was solved by direct methods
and refined by full-matrix least-squares techniques using the
SHELXL-97 program.24 Anisotropic displacement parameters
were refined for all non-hydrogen atoms. The hydrogen atoms
were added in a riding model and not refined. Crystallographic
data of 1–6 are outlined in Table 4.
Acknowledgements
We are grateful to the National Key Foundation of China (no.
20633020), the Science & Technology Innovation Foundation
for the Young Scholar of Fujian Province (no. 2005J059), and
the National Nature Science Foundation of China (no.
20471061) for their financial support of this work.
References
1 (a) M. Y. Darensbourg, E. J. Lyon and J. J. Smee, Coord. Chem.
Rev., 2000, 206–207, 533–561; (b) M. Y. Darensbourg, E. J. Lyon,
X. Zhao and I. P. Georgakaki, Proc. Natl. Acad. Sci. U. S. A.,
2003, 100, 3683–3688; (c) D. J. Evans and C. J. Pickett, Chem. Soc.
Rev., 2003, 32, 268–275; (d) X. Liu, S. K. Ibrahim, C. Tard and C.
J. Pickett, Coord. Chem. Rev., 2005, 249, 1641–1652.
2 (a) M. Frey, ChemBioChem, 2002, 3, 153–160; (b) S. P. J. Albracht,
Biochem. Acta, 1994, 1188, 167–204; (c) A. Volbeda, M. H.
Charon, C. Piras, E. C. Hatchikian, M. Frey and J. C. Fontecil-
la-Camps, Nature, 1995, 373, 580–587; (d) R. Cammack, Nature,
1999, 397, 214–215; (e) M. W. W. Adams and E. I. Stiefel, Science,
1998, 282, 1842–1843; (f) J. Alper, Science, 2003, 299, 1686–1687.
3 M. Korbas, S. Vogt, W. Meyer-Klaucke, E. Bill, E. J. Lyon, R. K.
Thauer and S. Shima, J. Biol. Chem., 2006, 281, 30804–30813.
4 M. W. W. Adams, Biochim. Biophys. Acta, 1990, 1020, 115–145.
5 L. Schwartz, G. Eilers, L. Eriksson, A. Gogoll, R. Lomoth and S.
Ott, Chem. Commun., 2006, 520–522.
6 X. Zhao, I. P. Georgakaki, M. L. Miller, J. C. Yarbrough and M.
Y. Darensbourg, J. Am. Chem. Soc., 2001, 123, 9710–9711.
7 E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies and M. Y.
Darensbourg, Angew. Chem., Int. Ed., 1999, 38, 3178–3180.
8 D. Chong, I. P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-
Chinchilla, M. P. Soriaga and M. Y. Darensbourg, Dalton Trans.,
2003, 4158–4163.
Electrochemistry
Acetonitrile (Aldrich Chemicals, spectroscopy grade) was the
solvent used for the electrochemistry, with a solution of 0.1 M
n-Bu4NPF6 in MeCN being used as the electrolyte. The
electrolyte solution was de-gassed by bubbling argon through
it for 10 min before measurements were carried out. All
electrochemistry results were obtained at a scan rate of
100 mV sÀ1 by using a CHI660A potentiostat and a three-
electrode cell under argon. The working electrode was a glassy
carbon disc (diameter 3 mm) polished with 1 mm diamond
pastes and sonicated in ion-free water for 10 min. The
reference electrode was a Ag/AgCl electrode (3 M KCl in
H2O) and the auxiliary electrode was a platinum wire. All
potential data are quoted against the Fc/Fc+ potential.
9 L.-C. Song, J.-H. Ge, X.-G. Zhang, Y. Liu and Q.-M. Hu, Eur. J.
Inorg. Chem., 2006, 3204–3210.
ꢀc
This journal is the Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2007
New J. Chem., 2007, 31, 1448–1454 | 1453