K. Oyama et al. / Tetrahedron Letters 48 (2007) 6005–6009
6009
J. Org. Chem. 2004, 69, 2206–2209; (f) Maloney, D. J.;
Hecht, S. M. Org. Lett. 2005, 7, 1097–1099; (g) Galdwell,
S. T.; Petersson, H. M.; Farrugia, L. J.; Mullen, A. C.;
Hartley, R. C. Tetrahedron 2006, 62, 7257–7265.
9. Toki, K.; Yamamoto, T.; Terahara, N.; Saito, N.; Honda,
T.; Inoue, H.; Mizutani, H. Phytochemistry 1991, 30,
3828–3829.
10. (a) Mahling, J.-A.; Jung, K.-H.; Schmidt, R. R. Liebigs
Ann. 1995, 461–466; (b) Fougerousse, A.; Gonzalez, E.;
Brouillard, R. J. Org. Chem. 2000, 65, 583–586; (c)
Tanaka, H.; Stohlmeyer, M. M.; Wandless, T. J.; Taylor,
L. P. Tetrahedron Lett. 2000, 41, 9735–9739.
11. (a) Schmidt, R. R.; Michel, J. Angew. Chem. 1980, 92,
763–764; (b) Schmidt, R. R. Angew. Chem. 1986, 25, 212–
235.
12. Chiba, H.; Funasaka, S.; Mukaiyama, T. Bull. Chem. Soc.
Jpn. 2003, 76, 1629–1644.
1H, H-6 or H-8), 5.27 (d, J = 7.3 Hz, 1H, H-100), 3.73 (dd,
J = 11.9, 2.5 Hz, 1H, H-600), 3.57 (dd, J = 11.9, 5.5 Hz,
1H, H-600), 3.48 (dd, J = 9.1, 7.3 Hz, 1H, H-200), 3.45 (t,
J = 9.1, 1H, H-300), 3.35 (t, J = 9.1 Hz, 1H, H-400), 3.24
(ddd, J = 9.1, 5.5, 2.5 Hz, 1H, H-500); Data for 13: 1H
NMR (600 MHz, CD3OD) d 8.06 (d, J = 8.8 Hz, 2H, H-
20,60), 6.90 (d, J = 8.8 Hz, 2H, H-30,50), 6.44 (d,
J = 2.2 Hz, 1H, H-6 or H-8), 6.24 (d, J = 2.2 Hz, 1H, H-
6 or H-8), 5.20 (d, J = 7.3 Hz, 1H, H-100), 4.21 (dd,
J = 11.8, 2.2 Hz, 1H, H-600), 4.10 (dd, J = 11.8, 5.9 Hz,
1H, H-600), 3.48 (dd, J = 9.1, 7.3 Hz, 1H, H-200), 3.46 (t,
J = 9.1 Hz, 1H, H-300), 3.42 (ddd, J = 9.1, 5.9, 2.2 Hz, 1H,
H-500), 3.33 (t, J = 9.1 Hz, 1H, H-400), 1.87 (s, 3H, OAc).
15. (a) Slimestad, R.; Andersen, Ø. M.; Francis, G. W.;
Marston, A.; Hostettmann, K. Phytochemistry 1995, 40,
1537–1542; (b) Kazuma, K.; Noda, N.; Suzuki, M.
Phytochemistry 2003, 62, 229–237.
13. It is well known that glycosylation using MeCN as a
solvent has the tendency to give b-linked glucoside:
Ratcliffe, A. J.; Fraser-Reid, B. J. Chem. Soc., Perkin
Trans. 1 1990, 747–750.
16. A minor a-linked glucoside disappeared during the reac-
tion and the purification.
17. Data for 12: 1H NMR (600 MHz, CDCl3) d 12.59 (s, 1H),
8.01 (d, J = 8.8 Hz, 2H, H-20,60), 7.2–7.4 (m, 20H, Bn),
6.96 (d, J = 9.2 Hz, 2H, H-30,50), 6.38 (d, J = 1.6 Hz, 1H,
H-6 or H-8), 6.28 (d, J = 1.6 Hz, 1H, H-6 or H-8), 5.51 (d,
J = 7.7 Hz, 1H, H-100), 5.11 (d, 1H, J = 11.0 Hz, Bn), 5.10
(s, 2H, Bn), 4.99 (d, J = 10.7 Hz, 1H, Bn), 4.81 (d,
J = 11.0 Hz, 1H,Bn), 4.78 (d, J = 10.7 Hz, 1H, Bn), 4.77
(d, J = 11.0 Hz, 1H, Bn), 4.51 (d, J = 11.0 Hz, 1H, Bn),
4.09 (dd, J = 12.0, 2.2 Hz, 1H, H-600), 3.98 (dd, J = 12.0,
4.0 Hz, 1H, H-600), 3.76 (t, J = 9.1 Hz, 1H, H-300), 3.64 (dd,
J = 9.1, 7.7 Hz, 1H, H-200), 3.52 (t, J = 9.1 Hz, 1H, H-400),
3.39 (ddd, J = 9.1, 4.0, 2.2 Hz, 1H, H-500), 1.76 (s, 3H,
OAc), 0.98 (s, 9H, Sit-Bu), 0.25 (s, 6H, SiMe2).
14. The synthetic 1,9 11,15 and 1315a were identical to the
natural ones. For NMR analysis of 1, we found a
misassignment. The assignments of H-200 and H-300 should
be reversed.9 Data for 1: 1H NMR (500 MHz, 5%
CF3CO2D in DMSO-d6) d 8.83 (s, 1H, H-4), 8.55 (d,
J = 8.9 Hz, 1H, H-20,60), 7.02 (d, J = 8.9 Hz, 1H, H-30,50),
6.94 (d, J = 2.3 Hz, 1H, H-8), 6.70 (d, J = 2.3 Hz, 1H, H-
6), 5.35 (d, J = 8.0 Hz, 1H, H-100), 4.38 (dd, J = 12.0,
1.7 Hz, 1H, H-6a00), 3.98 (dd, J = 12.0, 8.0 Hz, 1H, H-
6b00), 3.75 (ddd, J = 9.0, 8.0, 1.7 Hz, 1H, H-500), 3.43 (dd,
J = 9.0, 8.0 Hz, 1H, H-200), 3.35 (t, J = 9.0 Hz, H-300), 3.17
(t, J = 9.0 Hz, H-400), 1.97 (s, 3H, OAc), HRMS (FAB)
calcd for C23H23O11 (M+) 475.1240. Found: 475.1244;
Data for 11: 1H NMR (600 MHz, CD3OD) d 8.09 (d,
J = 9.0 Hz, 2H, H-20,60), 6.93 (d, J = 9.0 Hz, 2H, H-30,50),
6.42 (d, J = 2.2 Hz, 1H, H-6 or H-8), 6.23 (d, J = 2.2 Hz,
18. The low yield was due to deacetylation. The main product
was pelargonidin 3-O-glucoside (yield: 15%), which was
identical to the natural one: Yoshida, K.; Sato, Y.; Okuno,
R.; Kameda, K.; Isobe, M.; Kondo, T. Biosci. Biotech.
Biochem. 1996, 60, 589–593.