2250 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 6
Brief Articles
(2) Laakso, M.; Hyperglycemia and Cardiovascular Disease in Type
highly efficacious glucose and lipid lowering activities
in vivo along with an excellent ADME profile. Com-
pound 2 is currently in clinical development for the
treatment of diabetes and associated dyslipidemia.
PPARR/γ dual agonists such as 2 may also be of utility
in establishing a therapeutic modality for the treatment
of metabolic syndrome (which is characterized by im-
paired glucose tolerance, hyperinsulinemia, dyslipi-
demia, and hypertension).
2
Diabetes. Diabetes 1999, 48, 937-942. Beckman, J. A.;
Creager, M. A.; Libby, P.; Diabetes and Atherosclerosiss
Epidemiology, Pathophysiology, and Management. J. Am. Med.
Assoc. 2002, 287, 2570-2581.
(3) Wagman, A. S.; Nuss, J. M. Current Therapies and Emerging
Targets for the Treatment of Diabetes. Curr. Pharm. Des. 2001,
7, 417-450.
(4) Malinowski, J. M.; Bolesta, S. Rosiglitazone in the Treatment
of Type 2 Diabetes Mellitus: A Critical Review. Clin. Ther. 2000,
22 (10), 1151-1167.
(5) Gillies, P. S.; Dunn, C. J. Pioglitazone. Drugs 2000, 60 (2), 333-
343.
Experimental Section
(6) AZ-242: McIntyre, J. A.; Castan˜er, J.; Baye´s, M. Drugs Future
2003, 28 (10), 959-965. Presented at the 61st Scientific Sessions
of the American Diabetes Association, Philadelphia, PA, June
22-26, 2001; Poster Nos. 483-489.
(7) KRP-297/MK-767: Nomura, M.; Kinoshita, S.; Satoh, H.; Maeda,
T.; Murakamo, K.; Tsunoda, M.; Miyachi, H.; Awano, K. (3-
Substituted benzyl)thiazolidine-2,4-diones as Structurally New
Antihyperglycemic Agents. Bioorg. Med. Chem. Lett. 1999, 9 (4),
533-538.
(8) Sorbera, L. A.; Castan˜er, J.; Del Fresno, M.; Silvestre, J.
Netoglitazone. Drugs Future 2002, 27 (2), 132-139
(9) Sorbera, L. A.; Leeson, P. A.; Martin, L.; Castan˜er, J. Farglitazar.
Antidiabetic PPARγ agonist. Drugs Future 2001, 26 (4), 354-
363. Henke, B. R.; Blanchard, S. G.; Brackeen, M. F.; Brown,
K. K.; Cobb, J. E.; Collins, L.; Harrington, W. W., Jr.; Hashim,
M. A.; Hull-Ryde, E. A.; Kaldor, I.; Kliewer, S. A.; Lake, D. H.;
Leesnitzer, L. M.; Lehmann, J. M.; Lenhard, J. M.; Orband-
Miller, L. A.; Miller, J. F.; Mook, R. A.; Noble, S. A.; Oliver, W.;
Parks, D. J.; Plunket, K. D.; Szewczyk, J. R.; Willson, T. M. N-(2-
Benzoylphenyl)-L-tyrosine PPARγ Agonists. 1. Discovery of a
Novel Series of Potent Antihyperglycemic and Antihyperlipi-
demic Agents. J. Med. Chem. 1998, 41 (25), 5020-5036.
(10) Brown, P. J.; Winegar, D. A.; Plunket, K. D.; Moore, L. B.; Lewis,
M. C.; Wilson, J. G.; Sundseth, S. S.; Koble, C. S.; Wu, Z.;
Chapman, J. M.; Lehmann, J. M.; Kliewer, S. A.; Willson, T. M.
A Ureido-Thioisobutyric Acid (GW9578) Is a Subtype-Selective
PPARR-Agonist with Potent Lipid-Lowering Activity. J. Med.
Chem. 1999, 42 (19), 3785-3788.
(11) Lohray, B. B.; Lohray, B. B.; Bajji, A C.; Kalchar, S.; Poondra,
R. R.; Padakanti, S.; Chakrabarti, R.; Vikramadithyan, R. K.;
Misra, P.; Juluri, S.; Mamidi, N. V. S. R.; Rajagopalan, R. (-)3-
[4-[2-(Phenoxazin-10-yl)ethoxyphenyl]-2-ethoxypropanoic Acid
[(-) DRF 2725]: A Dual PPAR Agonist with Potent Antihyper-
glycemic and Lipid Modulating Activity. J. Med. Chem. 2001,
44, 2675-2678.
(12) Devasthale, P. V.; et al. Two manuscripts in preparation. The
concept of azaisosterism has been extensively used in drug
discovery. A classic example is the design of the achiral peptoids
from peptides. Kessler, H. PeptoidssA New Approach to the
Development of Pharmaceuticals. Angew. Chem., Int. Ed. Engl.
1993, 32 (4), 543-544. Simon, R. J.; Kania, R. S.; Zuckermann,
R. N.; Huebner, V. D.; Jewell, D. A.; Banville, S.; Ng, S.; Wang,
L.; Rosenberg, S.; Marlowe, C. K. Peptoids: A Modular Approach
to Drug Discovery. Proc. Natl. Acad. Sci. U.S.A. 1992, 89 (20),
9367-9371.
[(4-Methoxyphenoxycarbonyl)-{4-[2-(5-methyl-2-phen-
yloxazol-4-yl)ethoxy]benzyl}amino]acetic Acid (2). To a
10 °C solution of amine 6 (16.6 g, 43.7 mmol) in 200 mL of
CH2Cl2 were successively added Et3N (9.13 mL, 65.5 mmol)
and 4-methoxyphenyl chloroformate (7.65 mL, 50.2 mmol)
dropwise while maintaining the reaction temperature at e12
°C. The mixture was allowed to warm to 25 °C and stirred for
2 h. Volatiles were removed in vacuo, and the residue was
chromatographed (SiO2; 4:1 to 1:1 hexanes/EtOAc) to afford 2
methyl ester (22.8 g, 98%) as a colorless, viscous oil.
To a solution of the above methyl ester (18.75 g, 35.4 mmol)
in THF (275 mL) was added a solution of LiOH‚H2O (4.44 g,
105.9 mmol) in 275 mL of H2O. The resulting mixture was
stirred at 25 °C for 2.5 h, after which the pH was adjusted to
∼4 with 1 N aqueous HCl. The THF was removed in vacuo,
the residue was diluted with 800 mL of EtOAc, and the
mixture was stirred for 0.5 h at 25 °C. The organic phase was
separated, dried (MgSO4), and concentrated in vacuo to afford
a solid, which was recrystallized from EtOH to give 2 (8.41 g)
as a colorless solid. An additional 8.76 g of product was
recovered in two subsequent recrystallizations from the mother
liquor to give 2 (17.2 g total) in 94% yield. Mp: 139.1-140.2
°C. 1H NMR (400 MHz, CDCl3): rotamers, δ 2.38/2.39 (s, 3H,
oxazole-CH3), 3.00/3.01 (s, 2H, oxazole-CH2), 3.77/3.78 (s, 3H,
ArOCH3), 4.02 (s, 2H, -CH2COOH), 4.20-4.24 (m, 2H,
-CH2CH2OAr), 4.55 (s, 1H, ArCHaHbN), 4.65 (s, 1H, Ar-
CHaHbN), 6.8-7.0 (m, 4H), 7.0-7.1 (m, 2H), 7.2-7.3 (m, 2H),
7.40-7.45 (m, 3H), 7.96-7.98 (m, 2H). 13C NMR (100 MHz,
CDCl3): rotamers, δ 10.2 (oxazole-CH3), 26.0 (oxazole-CH2-),
47.3/47.5 (CH2COOH), 51.0/51.2 (ArCH2N), 55.6 (ArOCH3),
66.7 (oxazole-CH2CH2OAr), 114.3, 114.8, 122.5, 126.0, 127.3,
128.4, 128.7, 129.2, 129.9/130.1, 132.4, 144.8, 145.3, 155.4/
155.5, 157.1, 158.5, 159.7, 173.0. Anal. Calcd for C29H28N2O7:
C, 67.43; H, 5.46; N, 5.42. Found: C, 67.45; H, 5.47; N, 5.29.
IR (KBr): 2800-3200 (w, br), 1724 (vs), 1511 (s), 1197 (s), 1171
(s) cm-1. UV (MeOH, 13.9 mg/L): λmax 224, 277, 282 (sh), 290
(sh), 302 (sh) nm. LRMS (M + H+): 517.19. HRMS Calcd for
C29H29N2O7: 517.1975. Found: 517.1964.
Acknowledgment. The authors thank Dr. Carl
Decicco and Dr. Robert Zahler for proof-reading the
manuscript.
Supporting Information Available: Descriptions of
PPARR and -γ binding and transactivation assays, preadipo-
cyte differentiation assay, in vivo pharmacology; detailed
experimental procedures, physical data, elemental analyses,
IR, UV, 1H, 13C NMR, LRMS, and HRMS data for 5 and 6;
and synthesis procedure, 1H NMR, and LRMS data for 4. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(13) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C.
A.; Shah, R. D. Reductive Amination of Aldehydes and Ketones
with Sodium Triacetoxyborohydride. Studies on Direct and
Indirect Reductive Amination Procedures. J. Org. Chem. 1996,
61 (11), 3849-3862.
(14) Brown, P. J.; Smith-Oliver, T. A.; Charifson, P. S.; Tomkinson,
N. C. O.; Fivush, A. M.; Sternbach, D. D.; Wade, L. E.; Orband-
Miller, L.; Parks, D. J.; Blanchard, S. G. Identification of
peroxisome proliferator-activated receptor ligands from a biased
chemical library. Chem. Biol. 1997, 4 (12), 909-918.
(15) Cantello, B. C. C.; Cawthorne, M. A.; Haogh, D.; Hindley, R.
M.; Smith, Thurlby, P. L. The Synthesis of BRL 49653sA Novel
and Potent Antihyperglycaemic Agent. Bioorg. Med. Chem. Lett.
1994, 4 (10), 1181-1184. Giles, R. G.; Lewis, N. J.; Quick, J. K.
PCT Int. Application WO9923095, 1999; Chem. Abstr. 1999, 130,
313481.
Note Added after ASAP Publication. This manu-
script was released ASAP on 11/13/2004 with an incom-
plete author byline, with errors in the EC50 values in
the abstract, and with a labeling error in Scheme 1. The
correct version was posted on 12/6/2004.
References
(1) World Health Organization, Fact Sheet No. 138, April 2002.
B. Revealing the Cost of Type II Diabetes in Europe. Diabetologia
2002, 45, S5-S12. King, H.; Aubert, R. E.; Herman, W. H. Global
Burden of Diabetes, 1995-2025: Prevalence, Numerical Esti-
mates, and Projections. Diabetes Care 1998, 21, 1414-1431.
JM0496436