Journal of Medicinal Chemistry
ARTICLE
(3) (a) Abe, E.; Miyaura, C.; Sakagami, H.; Tekada, M.; Konno, K.;
Yamazaki, T.; Yoshiki, S.; Suda, T. Differentiation of mouse myeloid
leukemia cells induced by 1,25-dihydroxyvitamin D3. Proc. Natl. Acad.
Sci. U.S.A. 1981, 78, 4990–4994. (b) Branisteanu, D. D. The immune
modulating effects of vitamin D: how far are we from clinical applica-
tions. Acta Endrocrinol. 2006, 2, 437–454general review. (c) Adorini, L.
Regulation of Immune Responses by Vitamin D Receptor Ligands. In
Vitamin D, 2nd ed.; Feldman, D., Pike, J. W., Glorieux, F. H., Eds.;
Elsevier Academic Press: Burlington, MA, 2005; Chapter 36, pp
632ꢀ648; (d) Nagpal, S.; Na, S. Q.; Rathnachalam, R. Noncalcemic
actions of vitamin D receptor ligands. Endocr. Rev. 2005, 26, 662–687.
(4) Zhu, G. D.; Okamura, W. H. Synthesis of vitamin D (Calciferol).
Endocr. Rev. 1995, 95, 1877–1957.
(5) Sicinski, R. R.; Prahl, J. M.; Smith, C. M.; DeLuca, H. F. New
1α,25-dihydroxy-19-norvitamin D3 compounds of high biological activ-
ity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl
and 2-methylene analogues. J. Med. Chem. 1988, 41, 4662–4674.
(6) Shevde, N. K.; Plum, L. A.; Clagett-Dame, M.; Yamamoto, H.;
Pike, J. W.; DeLuca, H. F. A potent analog of 1α,25-dihydroxyvitamin D3
selectively induces bone formation. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 13487–13491.
(7) For a review see: Sicinski, R. R. 2-Alkylidene analogs of 19-nor-
1α,25-(OH)2D3: synthesis and biological activity. Pol. J. Chem. 2006,
80, 573–585.
(8) Sibilska, I.; Barycka, K. M.; Sicinski, R. R.; Plum, L. A.; DeLuca,
H. F. 1-desoxy analog of 2MD: synthesis and biological activity of (20S)-
25-hydroxy-2-methylene-19-norvitamin D3. J. Steroid Biochem. Mol. Biol.
2010, 121, 51–55.
(9) Grzywacz, P.; Chiellini, G.; Plum, L. A.; Clagett-Dame, M.;
DeLuca, H. F. Removal of the 26-methyl group from 19-nor-1α,25-
dihydroxyvitamin D3 markedly reduces in vivo calcemic activity without
altering in vitro VDR binding, HL-60 cell differentiation, and transcrip-
tion. J. Med. Chem. 2010, 53, 8642–8649.
(10) Barycki, R.; Sicinski, R. R.; Plum, L. A.; Grzywacz, P.; Clagett-
Dame, M.; DeLuca, H. F. Removal of the 20-methyl group from
2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 (2MD) selec-
tively eliminates bone calcium mobilization activity. Bioorg. Med. Chem.
2009, 17, 7658–7669.
domain of the rat vitamin D receptor. J. Steroid Biochem. Mol. Biol. 2004,
89ꢀ90, 13–17.
(18) Plum, L. A.; Prahl, J. M.; Ma, X.; Sicinski, R. R.; Gowlugari, S.;
Clagett-Dame, M.; DeLuca, H. F. Biologically active noncalcemic
analogs of 1α,25-dihydroxyvitamin D with an abbreviated side chain
containing no hydroxyl. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6900–6904.
(19) Glebocka, A.; Sicinski, R. R.; Plum, L. A.; Clagett-Dame, M.;
DeLuca, H. F. New 2-alkylidene 1α,25-dihydroxy-19-norvitamin D3
analogues of high intestinal activity: synthesis and biological evaluation
of 2-(30-alkoxypropylidene)- and 2-(30-hydroxypropylidene) deriva-
tives. J. Med. Chem. 2006, 49, 2909–2920.
(20) Glebocka, A.; Sicinski, R. R.; Plum, L. A.; DeLuca, H. F. 2-(30-
Hydroxypropylidene)-1α-hydroxy-19-norvitamin D compounds with
truncated side chains. J. Steroid Biochem. Mol. Biol. 2007, 103, 310–315.
(21) Fall, Y.; Barreiro, C.; Fernandez, C.; Mourino, A. Vitamin D
heterocyclic analogues. Part 1: A stereoselective route to CD systems
with pyrazole rings in their side chains. Tetrahedron Lett. 2002,
43, 1433–1436.
(22) Granja, J. R.; Castedo, L.; Mourino, A. Studies on the opening
of dioxanone and acetal templates and application to the synthesis of
1α,25-dihydroxyvitamin D2. J. Org. Chem. 1993, 58, 124–131.
(23) Deshayes, H.; Pete, J. P. Reduction of alkyl esters to alkanes by
sodium in hexamethylphosphoric triamide. A new method for the
deoxygenation of alcohols. J. Chem. Soc., Chem. Commun. 1978, 567–568.
(24) Debal, A.; Cuvigny, T.; Larcheveque, M. Activation by a cyano
group: II; a new synthesis of substituted primary alcohols. Synthesis
1976, 391–393.
(25) Hill, J.; Iriarte, J.; Schaffner, K.; Jeger, O. UV.-Besrtahlung von
ges€attigten und β,γ-unges€attigten, homoallylisch konjugierten Steroi-
daldehyden. Helv. Chim. Acta 1966, 49, 292–311.
(26) Roth, H. D. Twentieth century developments in photochem-
istry. Brief historical sketches. Pure Appl. Chem. 2001, 73, 395–403.
(27) Photochemie II. In Methoden der Organischen Chemie (Houben-
Weyl); Georg Thieme Verlag: Stuttgart, Germany, 1975, pp 877ꢀ893.
(28) Pitts, J. N.; Osborne, A. D. Structure and reactivity in the
radiolysis of ketones. J. Am. Chem. Soc. 1961, 83, 3011–3012.
(29) Sheridan, R. S. Electronic spectroscopy of matrix isolated
singlet carbenes: simple models, conformational dependence, and
photochemistry. Inter-Amer. Photochem. Soc. Newslett. 2000, 23, 1.
(30) Tadiꢀc, J.; Juraniꢀc, I.; Moortgat, G. K. Photooxygenation of
n-hexanal in air. Molecules 2001, 6, 287–299.
(31) Cronin, T. J.; Zhu, L. Dye laser photolysis of n-pentanal from
280 to 330 nm. J. Phys. Chem. A 1998, 102, 10274–10279.
(32) Zhu, L.; Cronin, Narang, A. Wavelength-dependent photolysis
of i-pentanal and t-pentanal from 280 to 330 nm. J. Phys. Chem. A 1999,
103, 7248–7253.
(33) Baggiolini, E.; Hamlow, H. P.; Schaffner, K. Photochemical
reactions. LIX. On the mechanism of the photodecarbonylation of β,γ-
unsaturated aldehydes. J. Am. Chem. Soc. 1970, 92, 4906–4921.
(34) Suda, T.; DeLuca, H. F.; Tanaka, Y. Biological activity of 25-
hydroxyergocalciferol in rats. J. Nutr. 1970, 100, 1049–1052.
(35) Oxford Diffraction CrysAlis CCD and CrysAlis RED. Oxford
Diffraction, Wroczaw, Poland, 2001.
(36) Sheldrick, G. M. Phase annealing in SHELX-90: direct methods
for larger structures. Acta Crystallogr. 1990, A46, 467–473.
(37) Sheldrick, G. M. SHELXL93, Program for the Refinement of
Crystal Structures; University of G€ottingen: Germany, 1993.
(38) Wilson, A. J. C., Ed.; International Tables for Crystallography;
Kluwer: Dordrecht, The Netherlands, 1992; Vol. C.
(11) Chiellini, G.; Grzywacz, P.; Plum, L. A.; Barycki, R.; Clagett-
Dame, M.; DeLuca, H. F. Synthesis and biological properties of
2-methylene-19-nor-25-dehydro-1α-hydroxyvitamin D3-26,23-lactones-
weak agonists. Bioorg. Med. Chem. 2008, 16, 8563–8573.
(12) Yoshimoto, N.; Inaba, Y.; Yamada, S.; Makishima, M.; Shimizu,
M.; Yamamoto, K. 2-Methylene 19-nor-25-dehydro-1α-hydroxyvitamin
D3 26,23-lactones: synthesis, biological activities and molecular basis of
passive antagonism. Bioorg. Med. Chem. 2008, 16, 457–473.
(13) Grzywacz, P.; Plum, L. A.; Sicinski, R. R.; Clagett-Dame, M.;
DeLuca, H. F. Methyl substitution of the 25-hydroxy group on 2-methy-
lene-19-nor-1α,25-dihydroxyvitamin D3 (2MD) reduces potency but
allows bone selectivity. Arch. Biochem. Biophys. 2007, 460, 274–284.
(14) Igarashi, M.; Yoshimoto, N.; Yamamoto, K.; Shimizu, M.;
Ishizawa, M.; Makishima, M.; DeLuca, H. F.; Yamada, S. Identification
of a highly potent vitamin D receptor antagonist: (25S)-26-adamantyl-
25-hydroxy-2-methylene-22,23-didehydro-19,27-dinor-20-epi-vitamin
D3 (ADMI3). Arch. Biochem. Biophys. 2007, 460, 240–253.
(15) Vanhooke, J. L.; Tadi, B. P.; Benning, M. M.; Plum, L. A.;
DeLuca, H. F. New analogs of 2-methylene-19-nor-(20S)-1,25-dihy-
droxyvitamin D3 with conformationally restricted side chains: evaluation
of biological activity and structural determination of VDR-bound
conformations. Arch. Biochem. Biophys. 2007, 460, 161–165.
(16) Sato, M.; Nakamichi, Y.; Nakamura, M.; Sato, N.; Ninomiya, T.;
Muto, A.; Nakamura, H.; Ozawa, H.; Iwasaki, Y.; Kobayashi, E.; Shimizu,
M.; DeLuca, H. F.; Takahashi, N.; Udagawa, N. New 19-nor-(20S)-
1α,25-dihydroxyvitamin D3 analogs strongly stimulate osteoclast for-
mation both in vivo and in vitro. Bone 2007, 40, 293–304.
(17) Grzywacz, P.; Plum, L. A.; Sicinska, W.; Sicinski, R. R.; Prahl,
J. M.; DeLuca, H. F. 2-Methylene analogs of 1α-hydroxy-19-norvitamin
D3: synthesis, biological activities and docking to the ligand binding
6842
dx.doi.org/10.1021/jm200743p |J. Med. Chem. 2011, 54, 6832–6842