M.-J. Chen, Y.-M. Tsai / Tetrahedron Letters 48 (2007) 6271–6274
6273
C. B.; Klair, S. S.; Rosenthal, S. Chem. Soc. Rev. 1990, 19,
147–195; (c) Cirillo, P. F.; Panek, J. S. Org. Prep. Proced.
Int. 1992, 24, 553–582; (d) Page, P. C. B.; McKenzie, M.
J.; Klair, S. S.; Rosenthal, S. In The Chemistry of Organic
Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.;
John Wiley & Sons: New York, 1998; Vol. 2, pp 1599–
1665, Chapter 27; (e) Bonini, B. F.; Comes-Franchini, M.;
Fochi, M.; Mazzanti, G.; Ricci, A. J. Organomet. Chem.
1998, 567, 181–189.
phenylhydrazine treatment gave us amine 17 in 76%
yield.17 This amine reacted with the commercially avail-
able 2,3-isopropylidene-D-ribono-1,4-lactone (18), and
the resulting crude amide diol was treated with lead tet-
raacetate followed by acid treatment to afford a single
isomer of lactam carbinol 19 in 84% yield over three
steps.18 Exchanging the hydroxyl group in 19 with
thiophenol under acidic condition was not successful
possibly due to the presence of an acid sensitive isopro-
pylidene protecting group. We therefore took a different
approach by converting lactam carbinol 19 to thiocar-
bonate 20 (80%).19 Hydrolysis11 of the dithiane moiety
as above gave acylsilane 21 in 91% yield. Radical cycli-
zation reaction of 21 followed by desilylation gave an
isomeric mixture of alcohols 22 (22a/22b = 1/0.7; 91%
yield). Barton deoxygenation12 removed the C(8)-hydr-
oxy group to afford indolizidinone 23 in 68% yield. This
material had been converted to (+)-1,8a-di-epi-lentigi-
nosine (24) by Heitz and Overman.20
2. (a) Fossey, J.; Lefort, D.; Sorba, J. Free Radicals in
Organic Chemistry; John Wiley & Sons: New York, 1995;
(b) Giese, B.; Kopping, B.; Go¨bel, T.; Dickhaut, J.;
Thoma, G.; Kulicke, K. J.; Trach, F. Org. React. 1996, 48,
301–856; (c) Radicals in Organic Synthesis; Renaud, P.,
Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001.
3. Huang, C.-H.; Chang, S.-Y.; Wang, N.-S.; Tsai, Y.-M. J.
Org. Chem. 2001, 66, 8983–8991, and references cited
therein.
4. Hart, D. J. in Ref. 1c, Vol. 2, pp 279–302.
5. Tsai, Y.-M.; Nieh, H.-C.; Pan, J.-S.; Hsiao, D.-D. Chem.
Commun. 1996, 2469–2470.
6. For reviews about the synthesis of polyhydroxylated
alkaloids, see: (a) Revuelta, J.; Cicchi, S.; Goti, A.;
Brandi, A. Synthesis 2007, 485–504; (b) Michael, J. P.
Nat. Prod. Rep. 2005, 22, 603–626; (c) Pyne, S. G. Curr.
Org. Synth. 2005, 2, 39–57; (d) Yoda, H. Curr. Org. Chem.
2002, 6, 223–243; (e) Nemr, A. E. Tetrahedron 2000, 56,
8579–8629.
7. Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R.
J.; Nash, R. J. Phytochemistry 2001, 56, 265–295.
8. Hwang, D. J.; Kim, S. N.; Choi, J. H.; Lee, Y. S. Bioorg.
Med. Chem. 2001, 9, 1429–1437.
9. (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Hughes, D. L.
Org. React. 1992, 42, 335–656.
10. Dener, J. M.; Hart, D. J.; Ramesh, S. J. Org. Chem. 1988,
53, 6022–6030.
11. Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287–
290.
12. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin
Trans. 1 1975, 1574–1585.
Alternatively, alcohols 22 were oxidized with Dess–Mar-
tin periodinane (DMP) to yield ketone 25 (87%) as a sin-
gle isomer. This indicated that the two isomers of 22
were epimeric at C(8). Sodium borohydride reduction
of ketone 25 in methanol gave selectively the exo-isomer
22a in 70% yield. Borane reduction of 22a followed by
acid hydrolysis furnished (+)-1,2-di-epi-swainsonine21,22
(26) in 73% yield. This alkaloid is a potent inhibitor of a-
D-mannosidase (jack bean) with Ki of 6 lM.22 Again,
the radical cyclization of acylsilane 21 gave very good
stereoselectivity at the bridgehead position as in the case
of acylsilane 11. Although the stereochemistry at C(8) is
plagued with the lack of stereoselectivity at the hydro-
gen atom abstraction step of the cyclization reaction,
we demonstrated that the orientation of the C(8)-hydr-
oxy group could be manipulated through simple oxida-
tion and reduction processes.
13. For a review about radical chemistry associated with the
thiocarbonyl group, see Crich, D.; Quintero, L. Chem.
Rev. 1989, 89, 1413–1432.
14. Gurjar, M. K.; Ghosh, L.; Syamala, M.; Jayasree, V.
Tetrahedron Lett. 1994, 35, 8871–8872.
In summary, we have demonstrated that the a-acyl-
amino radical chemistry pioneered by Hart4 can be cou-
pled with the acylsilane functionality to produce
polyhydroxylated alkaloids in a versatile way. This
methodology can well-adopt readily available chiral
templates as starting materials. The cyclizations gave
excellent stereoselectivity at the bridgehead of the bicy-
clic structures. Although the stereochemistry of the new-
ly formed silyloxy group cannot be controlled in a
highly selective fashion, the stereochemistry can be con-
veniently manipulated through simple processes. This
work also demonstrated that the acylsilane functionality
embedded in a complex molecular system can be synthe-
sized and utilized in an useful way.
15. (a) Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, K.
Tetrahedron: Asymmetry 1993, 4, 1455–1456; (b) Cor-
dero, F. M.; Cicchi, S.; Goti, A.; Brandi, A. Tetrahedron
Lett. 1994, 35, 949–952; (c) Brandi, A.; Cicchi, S.;
Cordero, F. M.; Frignoli, R.; Goti, A.; Picasso, S.;
Vogel, P. J. Org. Chem. 1995, 60, 6806–6812; (d) Ha, D.-
C.; Yun, C.-S.; Lee, Y. J. Org. Chem. 2000, 65, 621–623;
(e) Ichikawa, Y.; Ito, T.; Isobe, M. Chem. Eur. J. 2005,
11, 1949–1957; (f) Yoda, H.; Kawauchi, M.; Takabe, K.
Synlett 1998, 137–138; (g) Cardona, F.; Moreno, G.;
Guarna, F.; Vogel, P.; Schuetz, C.; Merino, P.; Goti, A.
J. Org. Chem. 2005, 70, 6552–6555; (h) Rasmussen, M.
O.; Delair, P.; Greene, A. E. J. Org. Chem. 2001, 66,
5438–5443; (i) Klitzke, C. F.; Pilli, R. A. Tetrahedron
Acknowledgment
´
Lett. 2001, 42, 5605–5608; (j) Rabiczko, J.; Urbanczyk-
Lipkowska, Z.; Chmielewski, M. Tetrahedron 2002, 58,
1433–1441; (k) El-Nezhawy, A. O. H.; El-Diwani, H. I.;
Schmidt, R. R. Eur. J. Org. Chem. 2002, 4137–4142; (l)
Raghavan, S.; Sreekanth, T. Tetrahedron: Asymmetry
2004, 15, 565–570.
Financial support by the National Science Council of
the Republic of China is gratefully acknowledged.
References and notes
16. Lai, G. Synth. Commun. 2001, 31, 565–568.
17. Metcalf, B. W.; Bey, P.; Danzin, C.; Jung, M. J.; Casara,
P.; Vevert, J. P. J. Am. Chem. Soc. 1978, 100, 2551–
2553.
1. For recent reviews about acylsilanes, see: (a) Ricci, A.;
Degl’Innocenti, A. Synthesis 1989, 647–660; (b) Page, P.