Journal of the American Chemical Society
Communication
Ed. 2012, 51, 5183. (c) Ye, K.-Y.; Zhao, Z.-A.; Lai, Z.-W.; Dai, L.-X.; You,
S.-L. Synthesis 2013, 45, 2109. (d) Ye, K.-Y.; Dai, L.-X.; You, S.-L. Chem. -
Eur. J. 2014, 20, 3040. (e) Yang, Z.-P.; Wu, Q.-F.; You, S.-L. Angew.
Chem., Int. Ed. 2014, 53, 6986. (f) Zhang, X.; Yang, Z.-P.; Huang, L.;
You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 1873. (g) Yang, Z.-P.; Wu, Q.-
F.; Shao, W.; You, S.-L. J. Am. Chem. Soc. 2015, 137, 15899. (h) Ye, K.-Y.;
Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed.
2016, 55, 8113. (i) Zhang, X.; Liu, W.-B.; Cheng, Q.; You, S.-L.
Organometallics 2016, 35, 2467. (j) Yang, Z.-P.; Zheng, C.; Huang, L.;
Qian, C.; You, S.-L. Angew. Chem., Int. Ed. 2017, 56, 1530.
ACKNOWLEDGMENTS
■
The Robert A. Welch Foundation (F-0038), the NIH-NIGMS
(RO1-GM069445), and the Alexander von Humboldt Founda-
tion Feodor-Lynen postdoctoral fellowship program (T.W.) are
acknowledged for partial support of this research. Steven T.
Staben is thanked for helpful discussions and Baiwei Lin, Kewei
Xu and Yanzhou Liu for analytical data.
REFERENCES
■
(11) (a) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2011,
38, 155. (b) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem., Int. Ed.
2012, 51, 12662. (c) Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev.
2016, 45, 1570.
(1) (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965,
6, 4387. (b) Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292.
(2) For selected reviews on metal catalyzed allylic substitution, see:
(a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (b) Trost,
B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (c) Graening, T.;
Schmalz, H.-G. Angew. Chem., Int. Ed. 2003, 42, 2580. (d) Trost, B. M. J.
Org. Chem. 2004, 69, 5813. (e) Lu, Z.; Ma, S. Angew. Chem., Int. Ed.
2008, 47, 258. (f) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010,
1, 427. (g) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem.
2012, 10, 3147. (h) Moberg, C. Top. Organomet. Chem. 2011, 38, 209.
(i) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41,
4467. (j) Oliver, S.; Evans, P. A. Synthesis 2013, 45, 3179. (k) Butt, N. A.;
Zhang, W. Chem. Soc. Rev. 2015, 44, 7929. (l) Trost, B. M. Tetrahedron
2015, 71, 5708.
(3) (a) Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am.
Chem. Soc. 2001, 123, 9525. (b) Onodera, G.; Watabe, K.; Matsubara,
M.; Oda, K.; Kezuka, S.; Takeuchi, R. Adv. Synth. Catal. 2008, 350, 2725.
(4) Reviews: (a) Takeuchi, R. Synlett 2002, 1954. (b) Takeuchi, R.;
Kezuka, S. Synthesis 2006, 2006, 3349.
(5) (a) Bartels, B.; García-Yebra, C.; Rominger, F.; Helmchen, G. Eur.
J. Inorg. Chem. 2002, 2002, 2569. (b) Lipowsky, G.; Helmchen, G. Chem.
Commun. 2004, 116. (c) Welter, C.; Koch, O.; Lipowsky, G.; Helmchen,
G. Chem. Commun. 2004, 896. (d) Welter, C.; Dahnz, A.; Brunner, B.;
(12) For spectroscopic and crystallographic evidence of a stable
rhodium enyl complex and its role in enabling regio- and stereospecific
rhodium catalyzed allylic substitution, respectively, see: (a) Lawson, D.
N.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc. A 1966, 1733. (b) Tanaka,
I.; Jin-no, N.; Kushida, T.; Tsutsui, N.; Ashida, T.; Suzuki, H.; Sakurai,
H.; Moro-oka, Y.; Ikawa, T. Bull. Chem. Soc. Jpn. 1983, 56, 657.
(c) Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
(13) Beyond the rather complex effects of Lewis basic additives (refs 5a
6a, vs 6b), highly π-acidic ligands are required to preserve stereo-
specificity in iridium catalyzed reactions of branched allyl proelec-
trophiles: Bartels, B.; Helmchen, G. Chem. Commun. 1999, 741.
(14) For initial reports, see: (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J.
Am. Chem. Soc. 2008, 130, 6340. (b) Kim, I. S.; Han, S. B.; Krische, M. J.
J. Am. Chem. Soc. 2009, 131, 2514.
(15) For preparation and chromatographic purification of the iridium
catalyst in 85% yield, see: Gao, X.; Townsend, I. A.; Krische, M. J. J. Org.
Chem. 2011, 76, 2350.
(16) For a recent overview of enantioselective allylations and
propargylations catalyzed by π-allyliridium C,O-benzoates, see: Kim,
S. W.; Zhang, W.; Krische, M. J. Acc. Chem. Res. 2017, 50, 2371.
(17) For other enantioselective metal catalyzed allylic aminations
employing diverse allyl proelectrophiles, see: (a) Cooke, M. L.; Xu, K.;
Breit, B. Angew. Chem., Int. Ed. 2012, 51, 10876. (b) Arnold, J. S.;
Nguyen, H. M. J. Am. Chem. Soc. 2012, 134, 8380. (c) Chen, Q.-A.;
Chen, Z.; Dong, V. M. J. Am. Chem. Soc. 2015, 137, 8392. (d) Xu, K.;
Wang, Y.-H.; Khakyzadeh, V.; Breit, B. Chem. Sci. 2016, 7, 3313.
(e) Mwenda, E. T.; Nguyen, H. M. Org. Lett. 2017, 19, 4814. (f) Guo,
W.; Cai, A.; Xie, J.; Kleij, A. W. Angew. Chem., Int. Ed. 2017, 56, 11797.
(18) For selected reviews on the catalytic enantioselective synthesis of
allylic amines, see: (a) Cannon, J. S.; Overman, L. E. Acc. Chem. Res.
2016, 49, 2220. (b) Grange, R. L.; Clizbe, E. A.; Evans, P. A. Synthesis
2016, 48, 2911. (c) Fernandes, R. A.; Kattanguru, P.; Gholap, S. P.;
Chaudhari, D. A. Org. Biomol. Chem. 2017, 15, 2672.
Streiff, S.; Dubon, P.; Helmchen, G. Org. Lett. 2005, 7, 1239.
̈
(e) Weihofen, R.; Dahnz, A.; Tverskoy, O.; Helmchen, G. Chem.
Commun. 2005, 3541. (f) Weihofen, R.; Tverskoy, O.; Helmchen, G.
Angew. Chem., Int. Ed. 2006, 45, 5546. (g) Spiess, S.; Berthold, C.;
Weihofen, R.; Helmchen, G. Org. Biomol. Chem. 2007, 5, 2357.
(h) Spiess, S.; Raskatov, J. A.; Gnamm, C.; Brodner, K.; Helmchen, G.
Chem. - Eur. J. 2009, 15, 11087. (i) Gartner, M.; Jakel, M.; Achatz, M.;
SonnenSchein, C.; Tverskoy, O.; Helmchen, G. Org. Lett. 2011, 13,
2810.
̈
̈
̈
(6) Reviews: (a) Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies, M.;
̈
Weihofen, R. Chem. Commun. 2007, 675. (b) Helmchen, G. In Iridium
Complexes in Organic Synthesis; Oro, L. A., Claver, C., Eds.; Wiley-VCH:
Weinheim, 2009; pp 211−250. (c) Qu, J.; Helmchen, G. Acc. Chem. Res.
2017, 50, 2539.
(19) An enantiomeric enrichment of 82% ee was observed using the
SEGPHOS-modified catalyst. For the Roche ligand, see: (a) Schmid, R.;
(7) (a) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164.
(b) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc.
2003, 125, 14272. (c) Leitner, A.; Shu, C.; Hartwig, J. F. Proc. Natl. Acad.
Sci. U. S. A. 2004, 101, 5830. (d) Shu, C.; Leitner, A.; Hartwig, J. F.
Angew. Chem., Int. Ed. 2004, 43, 4797. (e) Leitner, A.; Shekhar, S.; Pouy,
M. J.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15506. (f) Leitner, A.;
Shu, C.; Hartwig, J. F. Org. Lett. 2005, 7, 1093. (g) Shekhar, S.; Trantow,
B.; Leitner, A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 11770.
(h) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem. Soc.
2007, 129, 7508. (i) Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc. 2007,
129, 11680. (j) Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J.
F. Org. Lett. 2007, 9, 3949.
(8) Reviews: (a) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43,
1461. (b) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34,
169.
(9) (a) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew.
Chem., Int. Ed. 2007, 46, 3139. (b) Roggen, M.; Carreira, E. M. J. Am.
Chem. Soc. 2010, 132, 11917. (c) Lafrance, M.; Roggen, M.; Carreira, E.
M. Angew. Chem., Int. Ed. 2012, 51, 3470. (d) Rossler, S. L.; Krautwald,
S.; Carreira, E. M. J. Am. Chem. Soc. 2017, 139, 3603.
Cereghetti, M.; Heiser, B.; Schonholzer, P.; Hansen, H.-J. Helv. Chim.
̈
Acta 1988, 71, 897. (b) Schmid, R.; Foricher, J.; Cereghetti, M.;
Schonholzer, P. Helv. Chim. Acta 1991, 74, 370.
̈
(20) (a) Vrieze, D. C.; Hoge, G. S.; Hoerter, P. Z.; Van Haitsma, J. T.;
Samas, B. M. Org. Lett. 2009, 11, 3140. (b) Hocker, J.; Rudolf, G.;
̈
Bachle, F.; Fleischer, S.; Lindner, B. D.; Helmchen, G. Eur. J. Org. Chem.
2013, 2013, 5149.
̈
(21) Lee, B. K.; Kim, M. S.; Hahm, H. S.; Kim, D. S.; Lee, W. K.; Ha, H.-
J. Tetrahedron 2006, 62, 8393.
(22) For a related RCM, see: Edwards, A. S.; Wybrow, R. A. J.;
Johnstone, C.; Adams, H.; Harrity, J. P. A. Chem. Commun. 2002, 1542.
(23) For selected reviews on carbonyl allylation via umpolung of π-
allyls, see: (a) Masuyama, Y. In Advances in Metal-Organic Chemistry;
Liebeskind, L. S., Ed.; JAI Press: Greenwich, 1994; Vol. 3, p 255.
(b) Tamaru, Y. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E.-i., de Meijere, A., Eds.; Wiley: New York, 2002;
Vol. 2, pp 1917. (c) Tamaru, Y. In Perspectives in Organopalladium
Chemistry for the XXI Century; Tsuji, J., Ed.; Elsevier: Amsterdam, 1999;
pp 215. (d) Kondo, T.; Mitsudo, T.-A. Curr. Org. Chem. 2002, 6, 1163.
(e) Tamaru, Y. Eur. J. Org. Chem. 2005, 2005, 2647. (f) Zanoni, G.;
(10) (a) Ye, K.-Y.; Dai, L.-X.; You, S.-L. Org. Biomol. Chem. 2012, 10,
5932. (b) Liu, W.-B.; Zhang, X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX