(3,5-tBu-4-MeOPh)-MeO-BIPHEP was investigated. Gratify-
ingly, R-hydroxy ester 1b was obtained in 65% isolated yield
and 91% enantiomeric excess (Table 1, entry 17). Further
assay of the rhodium counterion, [Rh(cod)2]X, where X )
OTf, BF4, and “BARF” (BARF ) B(3,5-(CF3)2C6H3)4),
revealed no significant change in isolated yield or enanti-
oselection in response to variation of counterion (Table 1,
entries 17-19). In contrast, Brønsted acid additives were
found to have a profound effect on both isolated yield and
enantioselection. Brønsted acid additives are believed to
facilitate the catalytic process by circumventing highly
energetic 4-centered transition structures for σ-bond metath-
esis, as required for direct hydrogenolysis of metallacyclic
intermediates, with 6-centered transition structures for hy-
drogenolysis of rhodium carboxylates derived upon proto-
nolytic cleavage of the metallacycle.2 Whereas 2-naphthoic
acid (5 mol %) significantly increases the isolated yield of
1b, a dramatic decrease in enantioselection is observed (Table
1, entry 20). For couplings conducted in the presence of
triphenylacetic acid, which provide R-hydroxy ester 1b in
78% isolated yield and 95% enantiomeric excess, an increase
in both isolated yield and enantioselection was observed
(Table 1, entry 20). Accordingly, these latter conditions were
adopted as standard conditions.
glyoxalate under standard conditions (Figure 1). In all cases,
C-C coupling occurs at the acetylenic terminus of the
conjugated enyne to furnish R-hydroxy esters 1b-8b as single
constitutional isomers with complete control of alkene
geometry. The coupling was applicable to conjugated enynes
possessing aryl (1a, 2a, 3a), heteroaryl (4a, 8a), primary alkyl
(6a, 7a), and secondary alkyl (5a) substituents at the
acetylenic terminus. Isolated yields of the R-hydroxy esters
1b-8b ranged from 70 to 82%, and the levels of enantio-
selection ranged from 86 to 97% ee (Figure 1). Notably, over-
To assess scope, conjugated enynes 1a-8a possessing
structurally diverse acetylenic termini were coupled to ethyl
(5) For hydrogen-mediated couplings of alkynes to carbonyl compounds
and imines, see: (a) Huddleston, R. R.; Jang, H.-Y.; Krische, M. J. J. Am.
Chem. Soc. 2003, 125, 11488. (b) Jang, H.-Y.; Huddleston, R. R.; Krische,
M. J. J. Am. Chem. Soc. 2004, 126, 4664. (c) Kong, J.-R.; Cho, C.-W.;
Krische, M. J. J. Am. Chem. Soc. 2005, 127, 11269. (d) Cho, C.-W.; Krische,
M. J. Org. Lett. 2006, 8, 891. (e) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J.
J. Am. Chem. Soc. 2006, 128, 718. (f) Cho, C.-W.; Krische, M. J. Org.
Lett. 2006, 8, 3873. (g) Komanduri, V.; Krische, M. J. J. Am. Chem. Soc.
2006, 128, 16448. (h) Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2006,
128, 16040. (i) Ngai, M.-Y.; Barchuk, A.; Krische, M. J. J. Am. Chem.
Soc. 2007, 129, 280. (j) Skucas, E.; Kong, J.-R.; Krische, M. J. J. Am.
Chem. Soc. 2007, 129, 7242. (k) Barchuk, A.; Ngai, M.-Y.; Krische, M. J.
J. Am. Chem. Soc. 2007, 129, 8432.
(6) For hydrogen-mediated carbocyclizations, see: (a) Jang, H.-Y.;
Krische, M. J. J. Am. Chem. Soc. 2004, 126, 7875. (b) Jang, H.-Y.; Hughes,
F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem.
Soc. 2005, 127, 6174. (c) Rhee, J.-U.; Krische, M. J. J. Am. Chem. Soc.
2006, 128, 10674. (d) Jung, I. G.; Seo, J.; Lee, S. I.; Choi, Y.; Chung, Y.
K. Organometallics 2006, 25, 4240. (e) Smith, D. M.; Pulling, M. E.;
Norton, J. R. J. Am. Chem. Soc. 2007, 129, 770 and ref 7a.
Figure 1. Enantioselective catalytic reductive coupling of substi-
tuted 1,3-enynes to ethyl glyoxalate mediated by hydrogen. Cited
yields are of isolated material. See the Supporting Information for
detailed experimental procedures. Enantiomeric excess was deter-
mined via chiral stationary phase HPLC analysis.
(7) Prior to our work, two isolated examples of hydrogen-mediated C-C
bond formation that did not involve couplings to carbon monoxide were
reported: (a) Molander, G. A.; Hoberg, J. O J. Am. Chem. Soc. 1992, 114,
3123. (b) Kokubo, K.; Miura, M.; Nomura, M. Organometallics 1995, 14;
4521.
reduction of the diene side chain of adducts 1b-8b was not
observed under the conditions of hydrogen-mediated cou-
pling. Absolute stereochemical assignment of R-hydroxy
esters 1b-8b is based upon X-ray diffraction analysis of
the amide derived from 1b and (R)-1-(2-naphthyl)ethylamine.
Each olefin of the diene side chain of the reductive
coupling products 1b-8b is subject to selective manipulation.
To illustrate, R-hydroxy ester 1b was subjected to the
(8) Indirect asymmetric alkyne-aldehyde reductive coupling has been
achieved via stoichiometric alkyne hydrometallation (hydroboration or
hydrozirconation) followed by transmetallation to afford vinylzinc reagents,
which engage in enantioselective catalytic additions to aldehydes; see: (a)
Oppolzer, W.; Radinov, R. HelV. Chim. Acta 1992, 75, 170. (b) Oppolzer,
W.; Radinov, R. J. Am. Chem. Soc. 1993, 115, 1593. (c) Soai, K.; Takahashi,
K. J. Chem. Soc., Perkin Trans. 1 1994, 1257. (d) Wipf, P.; Xu, W.
Tetrahedron Lett. 1994, 35, 5197. (e) Oppolzer, W.; Radinov, R. N.; De
Brabander, J. Tetrahedron Lett. 1995, 36, 2607. (f) Wipf, P.; Ribe, S. J.
Org. Chem. 1998, 63, 6454. (g) Oppolzer, W.; Radinov, R. N.; El-Sayed,
E. J. Org. Chem. 2001, 66, 4766. (h) Dahmen, S.; Bra¨se, S. Org. Lett.
2001, 3, 4119. (i) Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem.
Soc. 2002, 124, 12225. (j) Ji, J.-X.; Qiu, L.-Q.; Yip, C. W.; Chan, A. S. C.
J. Org. Chem. 2003, 68, 1589. (k) Lurain, A. E.; Walsh, P. J. J. Am. Chem.
Soc. 2003, 125, 10677. (l) Ko, D.-H.; Kang, S.-W.; Kim, K. H.; Chung,
Y.; Ha, D.-C. Bull. Kor. Chem. Soc. 2004, 25, 35. (m) Sprout, C. M.;
Richmond, M. L.; Seto, C. T. J. Org. Chem. 2004, 69, 6666. (n) Jeon,
S.-J.; Chen, Y. K.; Walsh, P. J. Org. Lett. 2005, 7, 1729. (o) Jeon, S.-J.;
Fisher, E. L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2006, 128,
9618. (p) Lauterwasser, F.; Gall, J.; Hoefener, S.; Bra¨se, S. AdV. Synth.
Catal. 2006, 348, 2068.
(9) For indirect catalytic enantioselective alkyne-ketone reductive
couplings analogous to those described in the preceding reference, see: (a)
Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538. (b) Li, H.; Walsh,
P. J. J. Am. Chem. Soc. 2005, 127, 8355. (c) Jeon, S.-J.; Li, H.; Garcia, C.;
La Rochelle, L. K.; Walsh, P. J. J. Org. Chem. 2005, 70, 448.
(10) Direct alkyne-aldehyde reductive coupling to furnish allylic alcohols
has been achieved under the conditions of nickel catalysis; see: (a) Oblinger,
E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (b) Huang, W.-S.;
Chan, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221. (c) Mahandru, G. M.;
Liu, G.; Montgomery, J. J. Am. Chem. Soc. 2004, 126, 3698. (d) For enyne
coupling, see: Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison,
T. F. J. Am. Chem. Soc. 2004, 126, 4130. (e) Miller, K. M.; Jamison, T. F.
Org. Lett. 2005, 7, 3077.
Org. Lett., Vol. 9, No. 19, 2007
3747