Angewandte
Chemie
[4]N. Shangguan, S. Kiren, L. J. Williams, Org. Lett. 2007, 9, 1093.
[5]J. K. Crandall, D. J. Batal, D. P. Sebesta, F. Ling, J. Org. Chem.
1991, 56, 1153, and references therein.
[6]C. Rameshkumar, H. Xiong, M. R. Tracey, C. R. Berry, L. J. Yao,
R. P. Hsung, J. Org. Chem. 2002, 67, 1339.
[7]W. P. Reeves, G. G. Stroebel, Tetrahedron Lett. 1971, 12, 2945.
[8]J. A. Marshall, Y. Tang, J. Org. Chem. 1993, 58, 3233.
[9]J. A. Marshall, Y. Tang, J. Org. Chem. 1994, 59, 1457.
[10]D. R. Andrews, R. A. Giusto, A. R. Sudhakar, Tetrahedron Lett.
1996, 37, 3417.
mechanistic framework wherein nucleophilic addition to
SDEs involves concerted, asynchronous opening of both
epoxides.
Anionic reagents are excellent nucleophiles for SDE
opening, although side reactions can be problematic.
Although many neutral reagents are not good nucleophiles,
SDEs can be activated in the presence of hydroxylic
reagents.[3,4] Coordination to the distal SDE oxygen atom
(O2 in 13) lowers the barrier for attack at the proximal SDE
carbon atom (C1 in 13). In this way, hydrogen-bond activa-
tion, and presumably Lewis or Brønsted acid activation in
general, acts cooperatively to relieve ring strain in both
epoxides through SDE opening. The remarkable finding that
amides, amidines, and thioamides give heterocycles upon
addition to SDEs is readily understood: Certain nucleophiles
are able to act simultaneously as hydrogen-bonding activators
and as nucleophiles.
The new mechanistic model presented here is consistent
with all the available data. Nucleophilic SDE opening is
rationalized in terms of a reactivity continuum that involves
the concerted, asynchronous opening of both epoxides. This
process is facilitated by coordination to the oxygen atom
destined to become the hydroxy group.
[11]B. A. Hess, Jr., J. K. Cha, L. J. Schaad, P. L. Polavarapu, J. Org.
Chem. 1992, 57, 6367.
[12]Under these non-acidic conditions, only acetate addition is
observed. In contrast, exposure of an SDE to acetic acid in
CH2Cl2 gives oxetanone, enone, and acetate-addition products;
see: J. K. Crandall, W. H. Machleder, J. Am. Chem. Soc. 1968, 90,
7292; J. K. Crandall, W. W. Conover, J. B. Komin, W. H.
Machleder, J. Org. Chem. 1974, 39, 1723.
[13]a) A. Hantzsch, J. H. Weber, Ber. Dtsch. Chem. Ges. 1887, 20,
3118; b) R. Robinson, J. Chem. Soc. 1909, 95, 2167; c) S. Gabriel,
Ber. Dtsch. Chem. Ges. 1910, 43, 1283; d) M. R. Grimmett in
Advances in Heterocyclic Chemistry, Vol. 27 (Eds.: A. R.
Katritzky, A. J. Boulton), Academic, New York, 1980, pp. 241 –
326; e) J. V. Metzger in Comprehensive Heterocyclic Chemistry,
Vol. 5 (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, New York,
1984, pp. 345 – 498; f) J. V. Metzger in Comprehensive Hetero-
cyclic Chemistry, Vol. 6 (Eds.: A. R. Katritzky, C. W. Rees),
Pergamon, New York, 1984, pp. 235 – 332; g) R. R. Gupta, M.
Kumar, V. Gupta, Heterocyclic Chemistry II: Five-Membered
Heterocycles, Vol. 2, Springer, Berlin, 1999, pp. 374 – 434;
h) Oxazoles: Synthesis, Reactions, and Spectroscopy, Part A,
Vol. 60 (Ed.: D. C. Palmer), Wiley, Hoboken, NJ, 2003.
[14]a) Gaussian03 (RevisionB.02): M. J. Frisch et al., see the
Supporting Information; b) A. D. Becke, J. Chem. Phys. 1993,
98, 1372; c) B. Miehlich, A. Savin, H. Stoll, H. Pruess, Chem.
Phys. Lett. 1989, 157, 200; d) C. Lee, W. Yang, R. G. Parr, Phys.
Rev. B 1988, 37, 785.
Received: April 1, 2007
Published online: August 9, 2007
Keywords: allenes · nitrogen heterocycles · reaction mechanism ·
.
spirodiepoxides
[1]S. Katukojvala, K. N. Barlett, S. D. Lotesta, L. J. Williams, J. Am.
Chem. Soc. 2004, 126, 15348, and references therein.
[2]P. Ghosh, S. D. Lotesta, L. J. Williams, J. Am. Chem. Soc. 2007,
129, 2438.
[15]This observation is also consistent with observations discussed in
J. K. Crandall, D. J. Batal, F. Lin, T. Reix, G. S. Nadol, R. A. Ng,
Tetrahedron 1992, 48, 1427.
[3]S. D. Lotesta, Y. Hou, L. J. Williams, Org. Lett. 2007, 9, 869.
Angew. Chem. Int. Ed. 2007, 46, 7108 –7111
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7111