Inorganic Chemistry
Article
Complexes: 50 Years Since Barnett Rosenberg’s Discovery. J. Clin.
Oncol. 2015, 33, 4219−4226.
Lax, P. M.; Holland, L.; Krizanovic, O.; Lutterbeck, M.; Schurmann,
̈
M.; Fusch, E. C.; Lippert, B. On the Many Roles of NH3 Ligands in
Mono- and Multinuclear Complexes of Platinum. Dalton Trans. 2009,
10774−10786.
(2) (a) Harrison, R. C.; McAuliffe, C. A.; Zaki, A. M. An Efficient
Route for the Preparation of Highly Soluble Platinum(II) Antitumour
Agents. Inorg. Chim. Acta 1980, 46, L15−L16. (b) Neidle, S.; Ismail, I.
M.; Sadler, P. J. The Structure of the Antitumor Complex Cis-
(diammino)(1,1-cyclobutanedicarboxylato)Pt(II): X-Ray and NMR
Studies. J. Inorg. Biochem. 1980, 13, 205−212. (c) Beagley, B.;
Cruickshank, D. W. J.; McAuliffe, C. A.; Pritchard, R. G.; Zaki, A. M.;
Beddoes, R. L.; Cernik, R. J.; Mills, O. S. The Crystal and Molecular
Structure of Cis-diammine-1,1-cyclobutanedicarboxoplatinum(II) [cis-
Pt(NH3)2CBDCA]. Dynamic Puckering of the Cyclobutane Ring. J.
Mol. Struct. 1985, 130, 97−102.
(8) Haack, K.-J.; Goddard, R.; Porschke, K.-R. Applying the
̈
Macrocyclic Effect to Smaller Ring Structures. N,N′-Dimethyl-3,7-
diazabicyclo[3.3.1]nonane Nickel(0) Complexes. J. Am. Chem. Soc.
1997, 119, 7992−7999.
(9) (a) Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.;
Christensen, J.; Sen, D. Thermodynamic and Kinetic Data for Cation−
Macrocycle Interaction. Chem. Rev. 1985, 85, 271−339. (b) Hancock,
R. D.; Martell, A. E. The Chelate, Cryptate and Macrocyclic Effects.
Comments Inorg. Chem. 1988, 6, 237−284 and references cited therein..
(3) Galanski, M.; Jakupec, M. A.; Keppler, B. K. Oxaliplatin and
Derivatives as Anticancer Drugs−Novel Design Strategies. In Metal
(10) Tomassoli, I.; Gundisch, D. Bispidine as a Privileged Scaffold.
̈
Curr. Top. Med. Chem. 2016, 16, 1314−1342.
(11) Miyahara, Y.; Goto, K.; Inazu, T. Convenient Synthesis of 3,7-
Diazabicyclo[3.3.1]nonane (Bispidine). Synthesis 2001, 2001, 364−
366.
́
Compounds in Cancer Chemotherapy; Perez, J. M., Fuertes, M. A.,
Alonso, C., Eds.; Research Signpost: Trivandrum, India, 2005; pp
155−186.
(4) (a) Cleare, M. J.; Hoeschele, J. D. Studies on the Antitumor
Activity of Group VIII Transition Metal Complexes. Part I.
Platinum(II) Complexes. Bioinorg. Chem. 1973, 2, 187−210.
(b) Cleare, M. J.; Hoeschele, J. D. Anti-tumour Platinum Compounds.
Relationship Between Structure and Activity. Platinum Met. Rev. 1973,
17, 2−13. (c) Cleare, M. J. Transition Metal Complexes in Cancer
Chemotherapy. Coord. Chem. Rev. 1974, 12, 349−405. (d) Cleare, M.
J.; Hydes, P. C.; Malerbi, B. W.; Watkins, D. M. Anti-tumour Platinum
Complexes: Relationships Between Chemical Properties and Activity.
Biochimie 1978, 60, 835−850. (e) Connors, T. A.; Cleare, M. J.;
Harrap, K. R. Structure-Activity Relationships of the Antitumor
Platinum Coordination Complexes. Cancer Treat. Rep. 1979, 63,
1499−1502. (f) van der Veer, J. L.; Reedijk, J. Investigating
Antitumour Drug Mechanisms. Chem. Br. 1988, 24, 775−780.
(12) Cui, H.; Goddard, R.; Porschke, K.-R. Synthesis and
̈
Coordination Chemistry of N,N-Diallylbispidine. Organometallics
2011, 30, 6241−6252.
(13) Cui, H.; Goddard, R.; Porschke, K.-R. Degradation of
̈
Dichloromethane by Bispidine. J. Phys. Org. Chem. 2012, 25, 814−827.
(14) Cui, H.; Goddard, R.; Porschke, K.-R.; Hamacher, A.; Kassack,
̈
M. U. Bispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin.
Synthesis, Structures, and Cytotoxicity. Inorg. Chem. 2014, 53, 3371−
3384.
(15) Cui, H.; Goddard, R.; Porschke, K.-R.; Hamacher, A.; Kassack,
̈
M. U. Bispidin-9,9-diol Analogues of Cisplatin, Carboplatin, and
Oxaliplatin: Synthesis, Structures, and Cytotoxicity. Inorg. Chem. 2016,
55, 2986−2997.
(16) Mitra, R.; Goddard, R.; Porschke, K.-R. 9,9-Difluorbispidine
̈
(g) de Mier-Vinue,
Complexes with Cytotoxic Activity: Models for Structure−Activity
Relationship Studies. In Metal Compounds in Cancer Chemotherapy;
́
J.; Montana, A. M.; Moreno, V. Platinum
Analogs of Cisplatin, Carboplatin, and Oxaliplatin. In preparation.
(17) Stetter, H.; Meissner, H.-J. Synthese des 1.3-Diaza-6-oxa-
adamantans. Chem. Ber. 1963, 96, 2827−2830.
̃
(18) Budzikiewicz, H.; Djerassi, C.; Williams, D. H. Mass
Spectrometry of Organic Compounds; Holden-Day: San Francisco, CA,
1967; pp 297−335.
Per
́
ez, J. M., Fuertes, M. A., Alonso, C., Eds.; Research Signpost:
Trivandrum, India, 2005; pp 47−154. (h) Montana, A. M.; Batalla, C.
̃
The Rational Design of Anticancer Platinum Complexes: The
Importance of the Structure-Activity Relationship. Curr. Med. Chem.
2009, 16, 2235−2260.
(19) In six-membered hydrocarbon rings, the axial protons usually
resonate at higher field than the equatorial protons. It has been noted
before that this sequence can be reversed when heteroatoms (in
particular S) are part of the ring. (a) Klepikova, S. G.; Yu, V. K.;
(5) (a) Kelland, L. The Resurgence of Platinum-based Cancer
Chemotherapy. Nat. Rev. Cancer 2007, 7, 573−584. (b) Wilson, J. J.;
Lippard, S. J. Synthetic Methods for the Preparation of Platinum
Anticancer Complexes. Chem. Rev. 2014, 114, 4470−4495. (c) Farrell,
N. P. Multi-platinum Anti-cancer Agents. Substitution-inert Com-
pounds for Tumor Selectivity and New Targets. Chem. Soc. Rev. 2015,
44, 8773−8785.
(6) (a) Fanelli, M.; Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M.;
Paoli, P. New Trends in Platinum and Palladium Complexes as
Antineoplastic Agents. Coord. Chem. Rev. 2016, 310, 41−79.
(b) Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The Next
Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle
Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436−3486.
(c) Gibson, D. Platinum(IV) Anticancer Prodrugs − Hypotheses and
Facts. Dalton Trans. 2016, 45, 12983−12991.
(7) The generally poorly water-soluble cisplatin-type drugs can be
assumed to be partially self-associated when passing through the cell
membrane and entering the cell fluid due to hydrogen bonding of the
NH groups to anionic sites. These oligomeric entities must be cleaved
by hydrogen bonding to water and other bases in the cell fluid, apart
from ion dissociation of the compounds. By undergoing a multitude of
such equilibria with involvement of the NH functions, the drug is
thought to move on to select the DNA sites for the final destination.
Some of these aspects have been addressed, but a more detailed
picture still seems desirable. (a) Reedijk, J. Why Does Cisplatin Reach
Guanine-N7 With Competing S-Donor Ligands Available in the Cell?
Chem. Rev. 1999, 99, 2499−2510. (b) Reedijk, J. Metal-Ligand
Exchange Kinetics in Platinum and Ruthenium Complexes. Platinum
Met. Rev. 2008, 52, 2−11. (c) Miguel, P. J. S.; Roitzsch, M.; Yin, L.;
1
Fomicheva, E. E.; Mukhasheva, R. D.; Praliev, K. D.; Berlin, K. D. H
NMR Spectroscopy in the Study of the Three-dimensional Structure
of 7-Alkoxyalkyl-3-thia-7-azabicyclo[3.3.1]nonan-9-ones and Some of
Their Derivatives. Chem. Heterocycl. Compd. 2008, 44, 1398−1403.
(b) Yu, V. K.; Berlin, K. D.; Iskakova, T. K.; Faskhutdinov, M. F.;
Praliyev, K. D.; Lee, C. P.; Ten, A. Y.; Malmkova, A. Y. Unusual
Conformational Behavior of 3,7-Dihetera(N,N-;N,O-;N,S-)-
bicyclo[3.3.1]nonan-9-ols Via NMR Analysis. Phosphorus, Sulfur Silicon
Relat. Elem. 2014, 189, 864−872.
̀
(20) Brun, S.; Torres, O.; Pla-Quintana, A.; Roglans, A.; Goddard, R.;
Porschke, K.-R. Nickel(0) Complexes of Acyclic Polyunsaturated Aza
̈
Ligands. Organometallics 2013, 32, 1710−1720.
(21) Bispidine (A) crystallizes from pentane (−40 °C) in the
orthorhombic crystal system, space group P212121 (No. 19).13 All
molecules are nonsymmetric and of the same enantiomeric
conformation. The four molecules in the unit cell are pairwise
head−tail associated by N2−H2···N1* hydrogen bonds, forming
zigzag chains along two 2-fold screw axes parallel to the c axis that run
in opposite directions.
(22) Etter, M. C. Encoding and Decoding Hydrogen-bond Patterns
of Organic Compounds. Acc. Chem. Res. 1990, 23, 120−126.
(23) (a) Bondi, A. Van der Waals Volumes and Radii. J. Phys. Chem.
1964, 68, 441−451. (b) Mantina, M.; Chamberlin, A. C.; Valero, R.;
Cramer, C. J.; Truhlar, D. G. Consistent van der Waals Radii for the
Whole Main Group. J. Phys. Chem. A 2009, 113, 5806−5812.
(24) Hofmann, D. W. M. Fast Estimation of Crystal Densities. Acta
Crystallogr., Sect. B: Struct. Sci. 2002, 57, 489−493.
K
Inorg. Chem. XXXX, XXX, XXX−XXX