B. Machura et al. / Polyhedron 26 (2007) 4427–4435
[13] G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
4435
magnetic anomaly and below 14 K the value of vM product
increases with temperature lowering. This behavior is char-
acteristic of mononuclear complexes with d4 low-spin
octahedral Re(III) complexes (3T1g ground state) [30–38]
and arise because of the large spin–orbit coupling
(f = 2500 cmꢀ1 [39]), which gives diamagnetic ground
state. It seems that in room temperature, in accordance
Boltzmann’s distribution, it is populated higher magnetic
state, which is depopulated with temperature lowering
and decreasing of the magnetic moment is observed.
The variation of the magnetization M versus the mag-
netic field H for complex 1 at 2 K is shown in Fig. 6. The
M versus H curve for complex very slowly increases and
indicates value of the magnetization near zero (0.014 BM)
at 5 T. Magnetization of the sample confirms that the
ground state is diamagnetic.
[14] G.M. Sheldrick, SHELXL-97: Program for the Refinement of Crystal
Structures, University of Go¨ttingen, Go¨ttingen, Germany, 1997.
[15] G.M. Sheldrick, SHELXTL: release 4.1 for Siemens Crystallographic
Research Systems, 1990.
[16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C.
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J.
Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma,
G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G.
Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T.
Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challa-
combe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C.
Gonzalez, J.A. Pople, GAUSSIAN-03, Revision B.03, Gaussian, Inc.,
Pittsburgh, PA, 2003.
4. Supplementary material
CCDC 640907 and 640908 contain the supplementary
crystallographic data for C39H31Cl5N4OPRe and
C38H29Cl3N4Pr. These data can be obtained free of charge
from the Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk.
[17] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[18] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[19] M.E. Casida, in: J.M. Seminario (Ed.), Recent Developments and
Applications in Modern Density Functional Theory, Theoretical and
Computational Chemistry, vol. 4, Elsevier, Amsterdam, 1996.
[20] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299.
[21] E. Ko¨nig, Magnetic Properties of Coordination and Organometallic
Transition Metal Compounds, Springer, Berlin, 1966.
[22] I. Chakraborty, S. Bhattacharyya, S. Banerjee, B.K. Dirghangi, A.
Chakravorty, J. Chem. Soc., Dalton Trans. (1999) 3747.
[23] S. Sengupta, J. Gangopadhyay, A. Chakravorty, Dalton Trans.
(2003) 4635.
Acknowledgements
The GAUSSIAN-03 calculations were carried out in the
Wrocław Centre for Networking and Supercomputing,
WCSS, Wrocław, Poland. The work was supported by
the Polish Ministry of Science and Higher Education Grant
No. 1T09A12430.
[24] S. Das, I. Chakraborty, A. Chakravorty, Polyhedron 22 (2003) 901.
[25] J. Gangopadhyay, S. Sengupta, S. Bhattacharyya, I. Chakraborty, A.
Chakravorty, Inorg. Chem. 41 (2002) 2616.
[26] K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Coordination Compounds, 4th ed., Wiley–Interscience, New York,
1986.
[27] L.E. Helberg, S.D. Orth, M. Sabat, W.D. Harman, Inorg. Chem. 35
(1996) 5584.
References
[28] J. Rall, F. Weingart, D.M. Ho, M.J. Heeg, F. Tisato, E. Deutsch,
Inorg. Chem. 33 (1994) 3442.
[1] R.H. Holm, Chem. Rev. 87 (1987) 1401.
[29] S.D. Orth, J. Barrerra, M. Sabat, W.D. Harman, Inorg. Chem. 33
(1994) 3026.
[30] J.E. Fergusson, Coord. Chem. Rev. 1 (1966) 459.
[31] B.N. Figgis, J. Lewis, Prog. Inorg. Chem. 6 (1964) 37.
[32] B.N. Figgis, Introduction to Ligand Field, Wiley–Interscience, New
York, 1966, p. 248.
[2] C.C. Romao, F.E. Kuhn, W.A. Hermann, Chem. Rev. 97 (1997) 3197.
˜
¨
[3] S.B. Seymore, S.N. Brown, Inorg. Chem. 39 (2000) 325.
[4] W. Volkert, W.F. Goeckeler, G.J. Ehrhardt, A.R. Ketring, J. Nucl.
Med. 32 (1991) 174.
[5] E.A. Deutsch, K. Libson, J.L. Vanderheyden, Technetium and
Rhenium in Chemistry and Nuclear Medicine, Raven Press, New
York, 1990.
[33] J. Chatt, G.J. Leigh, D.M.P. Mingos, E.W. Randall, D. Shaw, J.
Chem. Soc., Chem. Commun. (1968) 419.
[6] B. Machura, Coord. Chem. Rev. 249 (2005) 591.
[34] H.P. Gunz, G.J. Leigh, J. Chem. Soc. (1971) 2229.
[35] B. Coutinho, J.R. Dilworth, P. Jobanputra, R.M. Thompson, S.
Schmidt, J. Stra¨hle, C.M. Archer, J. Chem. Soc., Dalton Trans.
(1995) 1663.
[7] H. Chermette, Coord. Chem. Rev. 178-180 (1998) 699.
[8] M.C. Aragoni, M. Arca, T. Cassano, C. Denotti, F.A. Devillanova,
F. Isaia, V. Lippolis, D. Natali, L. Niti, M. Sampietro, R. Tommasi,
G. Verani, Inorg. Chem. Commun. 5 (2002) 869.
[36] M. Hirsch-Kuchma, T. Nicholson, A. Davison, W.M. Davis, A.G.
Jones, Inorg. Chem. 36 (1997) 3237.
[37] C.A. McConnachie, E.I. Stiefel, Inorg. Chem. 36 (1997) 6144.
[38] C. Pearson, A.L. Beauchamp, Can. J. Chem. 75 (1997) 220.
[39] A. Earnshaw, B.N. Figgis, J. Lewis, R.D. Peacok, J. Chem. Soc.
(1961) 3132.
[9] P. Romaniello, F. Lelj, Chem. Phys. Lett. 372 (2003) 51.
[10] P. Norman, P. Cronstrand, J. Ericsson, Chem. Phys. 285 (2002) 207.
[11] G. Rouschias, G. Wilkinson, J. Chem. Soc. A (1966) 465.
[12] (a) CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.2.;
(b) STOE
& Cie, X-RED: Version 1.18, STOE & Cie GmbH,
Darmstadt, Germany, 1999.