Angewandte
Chemie
[2] For recent reviews, see: a) K. A. Jørgensen, Synthesis 2003, 1117;
b) M. Bandini, A. Melloni, A. Umani-Ronchi, Angew. Chem.
2004, 116, 560; Angew. Chem. Int. Ed. 2004, 43, 550; c) M.
Bandini, E. Emer, S. Tommasi, A. Umani-Ronchi, Eur. J. Org.
Chem. 2006, 3527.
[3] For recent selected examples, see: a) D. Uraguchi, K. Sorimachi,
M. Terada, J. Am. Chem. Soc. 2004, 126, 11804; b) C. Palomo, M.
Oiarbide, B. G. Kardak, J. M. Garcia, A. Linden, J. Am. Chem.
Soc. 2005, 127, 4154; c) B. Török, M. Abid, G. London, J.
Esquibel, M. Török, S. C. Mhadgut, P. Yan, G. K. S. Prakash,
Angew. Chem. 2005, 117, 3146; Angew. Chem. Int. Ed. 2005, 44,
3086; d) D. A. Evans, K. R. Fandrick, H.-J. Song, J. Am. Chem.
Soc. 2005, 127, 8942; e) Y.-Q. Wang, J. Song, R. H. Hongming, L.
Deng, J. Am. Chem. Soc. 2006, 128, 8156; f) M. Terada, K.
Sorimachi, J. Am. Chem. Soc. 2007, 129, 292.
[4] a) Y. Nishibayashi, M. D. Milton, Y. Inada, M. Yoshikawa, I.
Wakiji, M. Hidai, S. Uemura, Chem. Eur. J. 2005, 11, 1433; b) G.
Onodera, H. Matsumoto, Y. Nishibayashi, S. Uemura, Organo-
metallics 2005, 24, 5799; c) S. C. Ammal, N. Yoshikai, Y. Inada,
Y. Nishibayashi, E. Nakamura, J. Am. Chem. Soc. 2005, 127,
9428; d) G. Onodera, Y. Nishibayashi, S. Uemura, Organo-
metallics 2006, 25, 35; e) Y. Nishibayashi, A. Shinoda, Y. Miyake,
H. Matsuzawa, M. Sato, Angew. Chem. 2006, 118, 4953; Angew.
Chem. Int. Ed. 2006, 45, 4835; f) Y. Yamauchi, G. Onodera, K.
Sakata, M. Yuki, Y. Miyake, S. Uemura, Y. Nishibayashi, J. Am.
Chem. Soc. 2007, 129, 5175.
[5] Y. Nishibayashi, H. Imajima, G. Onodera, Y. Inada, M. Hidai, S.
Uemura, Organometallics 2004, 23, 5100, and references therein.
[6] For recent reviews, see: a) V. Cadierno, M. P. Gamasa, J.
Gimeno, Eur. J. Inorg. Chem. 2001, 571; b) C. Bruneau, P. H.
Dixneuf, Angew. Chem. 2006, 118, 2232; Angew. Chem. Int. Ed.
2006, 45, 2176.
[7] a) Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. Hidai, S.
Uemura, J. Am. Chem. Soc. 2002, 124, 11846; b) Y. Nishibayashi,
Y. Inada, M. Yoshikawa, M. Hidai, S. Uemura, Angew. Chem.
2003, 115, 1533; Angew. Chem. Int. Ed. 2003, 42, 1495; c) Y.
Inada, M. Yoshikawa, M. D. Milton, Y. Nishibayashi, S. Uemura,
Eur. J. Org. Chem. 2006, 881.
[8] E. Bustelo, P. H. Dixneuf, Adv. Synth. Catal. 2005, 347, 393.
[9] Some metal salts and Brønsted acid have been reported to
function as catalysts for the propargylation of aromatic com-
pounds; see: a) M. Georgy, V. Boucard, J.-M. Campagne, J. Am.
Chem. Soc. 2005, 127, 14180; b) Z. Zhan, J. Yu, H. Liu, Y. Cui, R.
Yang, W. Yang, J. Li, J. Org. Chem. 2006, 71, 8298; c) R. Sanz, A.
Martꢀnez, J. M. ꢁlvarez-Gutiꢂrrez, F. Rodrꢀguez, Eur. J. Org.
Chem. 2006, 1383; d) Z.-P. Zhan, W.-Z. Yang, R.-F. Yang, J.-L.
Yu, J.-P. Li, H.-J. Liu, Chem. Commun. 2006, 3352.
Scheme 6. Proposed reaction pathway.
Subsequent nucleophilic attackof 2-methylfuran on the C
g
atom of the allenylidene ligand results in the formation of
another vinylidene complex. This vinylidene complex is then
transformed into a h2-coordinated alkyne complex, which
liberates the propargylated furan 3a by reaction with a
propargylic alcohol 1a, and regenerates the starting complex.
We proposed a similar catalytic cycle for the sulfur-bridged
diruthenium-catalyzed propargylic substitution reactions of
propargylic alcohols with nucleophiles in our previous studies,
along with a DFT calculation.[4a,c] It has already been
proposed that the synergistic effect in the diruthenium
complex is quite important for the promotion of the catalytic
reaction.[4a,c]
In summary, we have found that the ruthenium-catalyzed
enantioselective propargylation of aromatic compounds such
as 2-alkylfurans and N,N-dimethylaniline with propargylic
alcohols affords the corresponding propargylated aromatic
compounds selectively in good yields with high enantioselec-
tivity (up to 94% ee). This is the first example of asymmetric
propargylation of aromatic compounds. The synthetic method
described in this article provides a novel protocol for the
catalytic asymmetric Friedel–Crafts alkylation of aromatic
compounds, by using propargylic alcohols as a new type of
electrophiles, because, to date, the selective propargylation of
aromatic compounds is known to be quite difficult.[12]
[10] a) Y. Nishibayashi, G. Onodera, Y. Inada, M. Hidai, S. Uemura,
Organometallics 2003, 22, 873; b) Y. Inada, Y. Nishibayashi, S.
Uemura, Angew. Chem. 2005, 117, 7823; Angew. Chem. Int. Ed.
2005, 44, 7715.
[11] K. Okamoto, Y. Nishibayashi, S. Uemura, A. Toshimitsu, Angew.
Chem. 2005, 117, 3654; Angew. Chem. Int. Ed. 2005, 44, 3588.
[12] The Nicholas reaction has been known to be effective for the
propargylation of aromatic compounds by use of a stoichiomet-
ric amount of [Co2(CO)8], in which several steps are necessary to
obtain propargylated products from propargylic alcohols via the
cationic propargyl complexes [(propargyl)Co2(CO)6]+; a) K. M.
Nicholas, Acc. Chem. Res. 1987, 20, 207, and references therein;
b) A. J. M. Caffyn, K. M. Nicholas, Comprehensive Organome-
tallic Chemistry II, Vol. 12 (Eds.: E. W. Abel, F. G. A. Stone, G.
Wilkinson), Pergamon, New York, 1995, chap. 7.1; c) J. R.
Green, Curr. Org. Chem. 2001, 5, 809; d) B. J. Teobald,
Tetrahedron 2002, 58, 4133.
Received: March 22, 2007
Revised: April 27, 2007
Published online: June 5, 2007
Keywords: alkylation · asymmetric catalysis ·
.
propargylic alcohols · ruthenium · S ligands
[1] G. A. Olah, R. Krishnamurti, G. K. S. Prakash, Friedel–Crafts
Alkylation in Comprehensive Organic Synthesis, Vol. 3 (Eds.:
B. M. Trost, I. Fleming), Pergamon, Oxford, 1991, p. 293.
Angew. Chem. Int. Ed. 2007, 46, 6488 –6491
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim