X. Wen et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5777–5782
5781
5. (a) Lu, Z. J.; Bohn, J.; Bergeron, R.; Deng, Q. L.;
Ellsworth, K. P.; Geissler, W. M.; Harris, G.; McCann, P.
E.; Mckeever, B.; Myers, R. W.; Saperstein, R.; Wil-
loughby, C. A.; Yao, J.; Chapman, K. Bioorg. Med. Chem.
Lett. 2003, 13, 4125; (b) Wright, S. W.; Rath, V. L.;
Genereux, P. E.; Hageman, D. L.; Levy, C. B.; McClure,
L. D.; McCoid, S. C.; McPherson, R. K.; Schelhorn, T.
M.; Wilder, D. E.; Zavadoski, W. J.; Gibbs, E. M.;
Treadway, J. L. Bioorg. Med. Chem. Lett. 2005, 15, 459;
(c) Treadway, J. L.; Mendys, P.; Hoover, D. J. Expert
Opin. Invest. Drugs 2001, 10, 439, and references therein;
(d) Chrysina, E. D.; Kosmopolou, M. N.; Tiraidis, C.;
Kardarakis, R.; Bischler, N.; Leonidas, D. D.; Hadady,
Z.; Somsak, L.; Docsa, T.; Gergely, P.; Oikonomakos, N.
G. Protein Sci. 2005, 14, 873; (e) Hampson, L. J.; Arden,
C.; Agius, L.; Ganotidis, M.; Kosmopoulou, M. N.;
Tiraidis, C.; Elemes, Y.; Sakarellos, C.; Leonidas, D. D.;
Oikonomakos, N. G. Bioorg. Med. Chem. 2006, 14, 7835;
(f) Juhasz, L.; Docsa, T.; Brunyaszki, A.; Gergely, P.;
Antus, S. Bioorg. Med. Chem 2007, 15, 4048; (g) Birch, A.
M.; Kenny, P. W.; Oikonomakos, N. G.; Otterbein, L.;
Schofield, P.; Whittamore, P. R. O.; Whalley, D. P.
Bioorg. Med. Chem. Lett. 2007, 17, 394.
Control of glycogen metabolism plays a key role in
maintaining blood glucose homeostasis in both fed
and fasted states.13 Modulation of key elements in gly-
cogen metabolism such as GP and related signaling mol-
ecules represents a promising therapeutic approach to
diabetes.14 Corosolic acid and other pentacyclic triter-
penes may exert their glucose-lowering effect through
multiple targets including GP. Further studies are
needed to address the detailed molecular mechanisms
and to biologically evaluate pentacyclic triterpenes as
promising anti-diabetic agents with preventive effects
against diabetic complications.
In summary, two steric isomers of corosolic acid and a
series of corosolic acid derivatives have been synthesized
and tested for inhibitory activity against RMGPa.
Among the tested compounds, 8, 12d, and 12e are much
more potent than the lead compound 1. SAR studies
show that A-ring modification of corosolic acid may
improve the potency for GP inhibition. Extensive struc-
tural modifications, biological evaluation, and mechanis-
tic studies on corosolic acid and other pentacyclic
triterpenes are ongoing in this laboratory in order to find
potent and low-toxic anti-diabetic agents with preventive
and therapeutic effects against diabetic complications.
6. Wen, X. A.; Zhang, P.; Liu, J.; Zhang, L. Y.; Wu, X. M.;
Ni, P. Z.; Sun, H. B. Bioorg. Med. Chem. Lett. 2006, 16,
722.
7. Takayama, H.; Kitajima, M.; Ishizuka, T.; Seo, S. U.S.
Patent Application: US2005020681 A1, 2005.
8. (a) Huneck, S.; Snatzke, G. Chem. Ber. 1965, 98, 120;
(b) Bore, L.; Honda, T.; Gribble, G. W. J. Org. Chem.
2000, 65, 6278.
Acknowledgments
9. Analytical data for compound 2: IR (KBr, cmÀ1) 3454,
2928, 1688, 1630, 1456, 1383, 1038, 665; 1H NMR
(pyridine-d5, 300 MHz): d 0.88, 0.94, 1.03, 1.11, 1.25
(each 3H, s), 0.92 (3H, d, J = 6.2 Hz), 0.96 (3H, d,
J = 6.3 Hz), 2.61 (1H, d, J = 11.1 Hz, H-18), 3.74 (1H,
d, J = 2.6 Hz, H-3b), 4.28 (1H, m, H-2b), 5.44 (1H, t,
J = 3.3 Hz, H-12); 13C NMR (pyridine-d5, 300 MHz): d
16.8, 17.47, 17.50, 18.5, 21.4, 22.3, 23.7, 23.9, 24.9,
28.7, 29.5, 31.1, 33.5, 37.4, 38.6, 38.8, 39.4, 39.5, 40.2,
42.6, 43.0, 47.9, 48.1, 48.7, 53.6, 66.1, 79.4, 125.6,
139.3, 179.9; MS: 495 [M+Na]+; HRMS: Calcd for
C30H48O4–H: 471.3474; Found: 471.3485.
This program was financially supported by National
Natural Science Foundation (Grant 30672523), Chinese
University Ph.D Program Foundation (Grant 2005031
6008), Jiangsu Outstanding Researcher Grant, and pro-
gram for New Century Excellent Talents in University
(NCET-05-0495).
References and notes
10. Analytical data for compound 8: IR (KBr, cmÀ1) 3435,
2970, 2926, 2870, 1724, 1664, 1454, 1404, 1232, 1144,
1. (a) Miura, T.; Itoh, Y.; Kaneko, T.; Ueda, N.; Ishida, T.;
Fukushima, M.; Matsuyama, F.; Seino, Y. Biol. Pharm.
Bull. 2004, 27, 1103; (b) Liu, F.; Kim, J.; Li, Y.; Liu, X.; Li,
J.; Chen, X. J. Nutr. 2001, 131, 2242; (c) Judy, W. V.; Hari,
S. P.; Stogsdill, W. W.; Judy, J. S.; Naguib, Y. M. A.;
Psswater, R. J. Ethnopharmacol. 2003, 87, 115.
2. Fukushima, M.; Matsuyama, F.; Ueda, N.; Egawa,
K.; Takemoto, J.; Kajimoto, Y.; Yonaha, N.; Miura,
T.; Kaneko, T.; Nishi, Y.; Mitsui, R.; Fujita, Y.;
Yamada, Y.; Seino, Y. Diabetes Res. Clin. Pract.
2006, 73, 174.
3. (a) Na, M. K.; Yang, S. M.; He, L.; Oh, H.; Kim,
B. S.; Oh, W. K.; Kim, B. Y.; Ahn, J. S. Planta
Med. 2006, 72, 261; (b) Murakami, C.; Myoga, K.;
Kasai, R.; Ohtani, K.; Kurokawa, T.; Ishibashi, S.;
Dayrit, F.; Padolina, W. G.; Yamasaki, K. Chem.
Pharm. Bull. 1993, 41, 2129; (c) Wen, X. A.; Sun, H.
B.; Liu, J.; Wu, G. Z.; Zhang, L. Y.; Wu, X. M.;
Ni, P. Z. Bioorg. Chem. Med. Lett. 2005, 15, 4944.
4. (a) Greenberg, C. C.; Jurczak, M. J.; Danos, A. M.;
Brady, M. J. Am. J. Physiol. Endocrinol. Metab. 2006, 291,
E1; (b) Baker, D. J.; Greenhaff, P. L.; Timmons, J. A.
Expert Opin. Ther. Patents 2006, 16, 459; (c) Oikonoma-
kos, N. G. Curr. Protein Pept. Sci. 2002, 3, 561;
1
1053, 746, 696, 534; H NMR (CDCl3, 300 MHz): d 0.69,
1.06, 1.12, 1.20, 1.21 (each 3H, s), 0.86 (3H, d, J =
6.4 Hz), 0.95 (3H, d, J = 6.1 Hz), 2.31 (1H, d, J = 11.1 Hz,
H-18), 5.01 and 5.09 (each 1H, d, J = 12.4 Hz, CH2Ar),
5.29 (1H, t, J = 3.5 Hz, H-12), 5.93 (1H, s, HO-2), 6.35
(1H, s, H-1), 7.34 (5H, m, H-Ar); 13C NMR (CDCl3,
300 MHz): d 17.0, 17.6, 18.7, 19.7, 21.1, 21.8, 23.3, 23.5,
24.3, 27.2, 28.0, 30.7, 32.9, 36.6, 38.3, 38.9, 39.1, 40.3,
42.5, 43.1, 43.9, 48.2, 53.1, 54.0, 66.0, 125.1, 128.0, 128.2,
128.4, 136.4, 138.7, 143.8, 177.1, 201.1; MS: 581
[M+Na]+; HRMS: Calcd for C37H50O4–H–H: 557.3631;
Found: 557.3651.
11. Analytical data for compound 3: IR (KBr, cmÀ1) 3439,
2926, 1691, 1454, 1381, 1051, 787, 766, 663; 1H NMR
(pyridine-d5, 300 MHz): d 0.97 (3H, d, J = 5.7 Hz), 1.03
(3H, d, J = 6.4 Hz), 1.11, 1.25, 1.27, 1.36, 1.51 (each
3H, s), 2.66 (1H, d, J = 11.3 Hz, H-18), 3.46 (1H, d,
J = 3.9 Hz, H-3a), 4.41 (1H, m, H-2a), 5.50 (1H, m, H-
12); 13C NMR (pyridine-d5, 300 MHz): d 16.8, 17.5,
18.2, 18.7, 21.4, 23.9, 24.0, 25.0, 28.7, 30.3, 31.2, 33.7,
37.3, 37.5, 38.8, 39.5, 39.6, 40.2, 42.8, 45.2, 48.1, 48.5,
53.7, 56.0, 71.5, 78.4, 125.9, 139.3, 179.9; MS: 495
[M+Na]+; HRMS: Calcd for C30H48O4–H: 471.3474;
Found: 471.3481.
´
(d) Somsak, L.; Nagy, V.; Hadady, Z.; Docsa, T.; Gergely,
P. Curr. Pharm. Des. 2003, 9, 1177.