398
R. Bıyık et al. / Spectrochimica Acta Part A 68 (2007) 394–398
EPR parameters related with the structural parameters for
rhombic environment are given as [16,17]
ꢇ
ꢈ
ꢈ
ꢉ
ꢉ
ꢊ
ꢊ
√
√
3α + 3β
√
√
3β
k[2(α2 + β2) − 4 3αβ]
1
Ax = P −κ +
+ (gx − ge) −
(gy − ge) +
(gz − ge)
(gz − ge)
7
14
14α
α − 3β
ꢇ
√
√
3α − 3β
√
√
k[2(α2 + β2) + 4 3αβ]
1
3β
Ay = P −κ +
+ (gy − ge) −
(gx − ge) −
7
14
√
14α
α + 3β
ꢇ
ꢈ
ꢉ
ꢈ
ꢉ
ꢊ (7)
√
4k(α2 + β2)
1
3α − 3β
1
3α + 3β
√
√
Az = P −κ +
+ (gz − ge) −
(gx − ge) +
(gy − ge)
7
14
14
α + 3β
α − 3β
8k2α2λ
Δxy
√
√
2k2λ(α + 3β)2
2k2λ(α − 3β)2
gx = ge +
,
gy = ge +
,
gz = ge +
Δyz
Δxz
k, α and β are described above. κ is the polarization constant, P
is dipolar hyperfine parameter for metal ion defined as P = kP0,
where free ion value P0 for 65Cu2+ is 388 × 10−4 cm−1 and for
63Cu2+ is 416 × 10−4 cm−1 [17]; ge = 2.0023 the free electron
g value; Δxy, Δxz and Δyz are the energy splittings of |dxyꢁ,
|dxzꢁ and |dyzꢁ states with respect to ground state, and can be
optical absorption spectrum is irresolvable, the energy values are
calculated using Eq. (7). The values change between 11,500 and
16,000 cm−1 which are in the range of the values with similar
structures [17].
The coefficients of the both sites are seen to be slightly differ-
ent indicating a small difference in the environments of both
sites. The covalency parameter k approximately has the value of
0.72 and 0.83 for sites I and II, respectively, meaning that the
unpaired electrons spend 72 and 83% of time on d orbitals of
Cu2+ ions of both sites. The rest of the times, 28 and 13% for
two sites, respectively, are spent on ligand orbitals. Similarly,
the unpaired electron on d orbitals of Cu2+ ion for both sites
spend approximately 98 and 96% of time on dx2−y2 orbitals and
the rest of approximately 1 and 3% on d3z2−r2 orbitals for both
sites.
The wave functions of sites I and II are constructed using the
calculated values as follows:
√
ꢀ
ꢀ
ꢆ
ꢁ
ꢁ
ꢀ
ꢀ
References
ΨI = 0.72 0.994 dx2−y2 + 0.105 d3z2−r2
(8a)
(8b)
√
ꢀ
ꢀ
ꢀ
ꢀ
ꢁ
ꢁ
[1] D.E. Mauro, M.S. Domiciano, Physica B 304 (2001) 398.
[2] I. Sougandi, R. Venkatesen, P.S. Rao, Spectrochim. Acta Part A 60 (2004)
2653.
[3] S.K. Hoffmann, J. Goslar, J. Solid State Chem. 44 (1982) 343.
[4] D.W. Smith, Coordin. Chem. Rev. 21 (1976) 93.
[5] V.I. Murav’ev, Russ. J. Coordin. Chem. 31 (12) (2004) 883.
[6] B. Karabulut, R. Tapramaz, A. Bulut, Z. Naturforsch. 54a (1999)
256.
ΨII = 0.83[0.982 dx2−y2 + 0.188 d3z2−r2
[7] F. Koksal, I. Kartal, B. Karabulut, Z. Naturforsch. 54a (1999) 177.
[8] S.K. Misra, X. Li, C. Wang, J. Phys. Condens. Matter. 3 (1991)
8479.
[9] P. Huang, H. Ping, M.G. Zhao, J. Phys. Chem. Solids 64 (2003) 523.
[10] R. Bıyık, R. Tapramaz, B. Karabulut, Z. Naturforsch. 58a (2003)
499.
[11] F. Koksal, B. Karabulut, Y. Yerli, Int. J. Inorg. Mater. 3 (2001) 413.
[12] L.A. Nabors, C.G. Robert, Alternative Sweeteners, second ed., Marcel
Dekker, New York, 1991.
[13] Y. Yerli, F. Koksal, A. Karadag, Solid State Sci. 5 (2003) 1319.
[14] N.M. Atherton, Electron Spin Resonance Theory and Applications, John-
Wiley and Sons, New York, 1973.
[15] F.E. Mabbs, D. Collison, Electron paramagnetic resonance of d transition
metal compounds, in: Studies in Inorganic Shemistry, vol. 16, Elsevier
Science Publishers, 1992.
[16] T.B. Rao, M. Narayana, Phys. Stat. Sol. 6 (1964) 149.
[17] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition
Ions, Oxford University Press, 1970.
Fig. 7. Powder spectrum (a) and simulated spectrum and (b) of Cu2+ doped
[Zn(sac)2(paen)].