7230
M. Mizukami et al. / Tetrahedron Letters 48 (2007) 7228–7231
Table 2.
MOM
Ts
N
R3
R3
N Ts
R2
R1
R2
R1
TMSOTf
n
n
CH2Cl2, rt
(OC)3Co Co(CO)3
(OC)3Co Co(CO)3
3e-i
4e-i, e', h'
Entry
Substrates
R1
R2
R3
n
Time (min)
Products
Yield (%)
1
2
3
4
5
6
3e
3f
3g
3h
3i
OMe
OMe
OMe
OMe
OMe
OMe
H
H
OMe
H
OMe
H
H
OMe
H
Me
H
OMe
1
1
1
1
2
2
20
15
10
10
10
10
4e + 4e0 (R1 = R2 = H, R3 = OMe)
4f
4g
4h + 4h0 (R1 = Me, R2 = H, R3 = OMe)
4i
4j
86 (4e:4e0 = 4:1)
95
88
81 (4h:4h0 = 2:1)
84
81
3j
Next, we carried out an intramolecular FC reaction of
N-methoxymethyl sulfoneamides 3 with an acetylene
dicobalt moiety. Compounds 3e–i5 were prepared by
alkylation with methoxymethyl chloride followed by
treatment of 7e–i5 with Co2(CO)8 (Scheme 2).
Acknowledgement
This work was supported by a Grant-in-Aid for Scien-
tific Research (C) (15590017 to S.N.).
Interestingly, the presence of cobalt complexes was
found to increase the stabilization of cyclic amine with
methoxyl groups on the aromatic ring (Table 2). Treat-
ment of 3e–h with TMSOTf in CH2Cl2 afforded eight-
membered cyclic amine 4e–h5 in high yields (Table 2,
entries 1–4). The presence of dicobalt moiety in
2-benzazocines might prevent the C1–N2 bond from
taking the orientation parallel to the p-orbital of the
benzene ring. Also cyclization of 3i–j proceeded
smoothly to give the corresponding nine-membered
cyclic amine 4i–j5 (entries 5 and 6). The dicobalt moieties
of 4f–j were successfully removed by reduction with
n-Bu3SnH to produce 8f–j5 in high yields (Scheme 3).8
References and notes
1. (a) Viladomat, F.; Bastida, J.; Codina, C.; Campbell, W. E.;
Mathee, S. Phytochemistry 1995, 40, 307; (b) Riemer, B.;
Hofer, O.; Greger, H. Phytochemistry 1997, 45, 337; (c)
Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G. J. Am.
Chem. Soc. 1986, 108, 6404; (d) Sarker, S. D.; Dinan, L.;
Sik, V.; Underwood, E.; Waterman, P. G. Tetrahedron Lett.
1998, 39, 1421; (e) Rahbaek, L.; Anthoni, U.; Christopher-
sen, C.; Nielsen, P. H.; Petersen, B. O. J. Org. Chem. 1996,
61, 887; (f) Bentley, K. W. J. Am. Chem. Soc. 1967, 89,
2464; (g) Banerji, A.; Majumder, P. L.; Chatterjee, A.
Phytochemistry 1970, 9, 1491.
2. Review for the Pictet–Spengler reaction: (a) Cox, E. D.;
Cook, J. M. Chem. Rev. 1995, 95, 1797; (b) Hino, T.;
Nakagawa, M. Heterocycles 1998, 49, 499.
3. (a) Wittekind, R. R.; Lazarus, S. J. Heterocycl. Chem. 1971,
8, 495; (b) Marson, C. M.; Pink, J. H. Tetrahedron Lett.
1995, 36, 8107; (c) Merriman, G. H.; Fink, D. M.; Freed, B.
S.; Kurys, B. E.; Pavlek, S.; Varriano, J.; Paulus, E. F.
Synlett 2000, 137; (d) Martins, J. C.; Rompaey, K. V.;
In conclusion, an intramolecular Friedel–Crafts reaction
of the iminium cation derived from N-methoxymethyl
sulfoneamide was found to be an efficient method to
generate eight-membered cyclic amines. A methyl group
on a benzene ring was a good electron-releasing group
to promote this reaction. However, the presence of a
methoxyl group on a benzene ring resulted in decompo-
sition of the corresponding cyclic amine. Introduction of
a cobalt complex to the side chain of the substrates was
found to suppress the decomposition. Further extension
of these reactions is in progress.
´
Wittmann, G.; To¨mbo¨ly, C.; Toth, G.; Kimpe, N. D.;
´
Tourwe, D. J. Org. Chem. 2001, 66, 2884; (e) Marson, C.
M.; Pink, J. H.; Hall, D. J. Org. Chem. 2003, 68, 792; (f)
Orazi, O. O.; Corral, R. A.; Giaccio, H. J. Chem. Soc.,
Perkin Trans. 1 1986, 1977; (g) Rabi-Barakay, A.; Ben-
Ishai, D. Tetrahedron 1994, 50, 10771; (h) Kim, H. J.;
Yoon, U. C.; Jung, Y. S.; Park, N. S.; Cederstrom, E. M.;
Mariano, P. S. J. Org. Chem. 1998, 63, 860.
4. For recent examples: (a) Jamison, T. F.; Shambayati, S.;
Crowe, W. E.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119,
4353; (b) Iwasawa, N.; Satoh, H. J. Am. Chem. Soc. 1999,
121, 7951; (c) Takai, S.; Isobe, M. Org. Lett. 2002, 4, 1183;
(d) Tanino, K.; Kondo, F.; Shimizu, T.; Miyashita, M. Org.
Lett. 2002, 4, 2217; (e) Kira, K.; Hamajima, A.; Isobe, M.
Tetrahedron 2002, 58, 1875; (f) Teobald, B. J. Tetrahedron
2002, 58, 4133; (g) Tanino, K.; Onuki, K.; Asano, K.;
Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I.
J. Am. Chem. Soc. 2003, 125, 1498; (h) Young, D. G. J.;
Burlison, J. A.; Peters, J. J. Org. Chem. 2003, 68, 3494; (i)
Baba, T.; Takai, S.; Sawada, N.; Isobe, M. Synlett 2004,
603; (j) Ortega, N.; Martin, T.; Martin, V. S. Org. Lett.
2006, 8, 871; (k) DiMartino, J.; Green, J. R. Tetrahedron
2006, 62, 1402; (l) Inaba, K.; Takaya, J.; Iwasawa, N.
Ts
N
R3
Ts
N
R3
R2
R1
n
-Bu3SnH
R2
R1
n
benzene, 60 °C
n
(OC)3Co
(R1 = R3 = OMe, R2 = H, n = 1)
4g (R1 = R2 = OMe, R3 = H, n = 1)
4h (R1 = OMe, R2 = H, R3 = Me, n = 1) 8h (87%)
Co(CO)3
(80%)
8g (74%)
4f
8f
4i (R1 = R3 = OMe, R2 = H, n = 2)
4j (R1 = R2 = OMe, R3 = H, n = 2)
8i (87%)
8j (88%)
Scheme 3.