Notable Effect of an Electron-Withdrawing Group
A R T I C L E S
Scheme 5. Bohn-Oppenheimer Molecular Dynamics Simulations
in the Denitrogenation of 1-Pyrazolines 1, 10a, and 10b
1-pyrazoline (1) after 120 fs; 8 in 10 trajectories produced
diradical DR1 after 100 fs. One trajectory gave spiropentane
(2) directly with conrotatory ring-closure from the transition
state TSa (Scheme 6a). Thus, the trajectory calculation results
are in good agreement with Bergman’s experiment, that is, the
selective formation of spiropentane (2) from 1-pyrazoline (1)
(see Scheme 2). In the trajectory calculations from the transition
state TSa110a, which contains a carbomethoxy group, the results
were striking (Scheme 5). Five out of 31 trajectories produced
alkylidenecyclobutane 12a. Twenty-five trajectories went back
to the pyrazoline 10a. One trajectory gave the diradical DR10a,
which is the precursor of the spiropentane 11a. Thus, the results
of the trajectory calculations are in good agreement with the
selective formation of an alkylidenecyclobutane derivative in
the denitrogenation of 3-carboalkoxy-substituted 1-pyrazolines
4,6, and 10a. It should be noted that the C5 carbon selectively
migrates to the C2 carbon from the backside of the departing
nitrogen atom, as shown in Scheme 6b. Thus, a formal [2 + 2
+ 2] cycloreversion reaction is proposed for the selective
formation of alkylidenecyclobutane derivatives in the denitro-
genation of the 3-carbomethoxy-substituted 1-pyrazoline. To
examine the generality of the selective formation of alky-
lidenecyclobutane derivatives, trajectory calculations were
performed at the same level of theory for the transition state
TSa110b. Eleven of 36 trajectories produced the 1,3-diradical
DR10b after 120 fs. One of the trajectories afforded spiropen-
tane derivative 11a after 350 fs (Figure S1 in Supporting
Information). The remaining 25 trajectories afforded the ex-
pected alkylidenecyclobutane 12b. Thus, an electron-withdraw-
ing group at C3 in the 1-pyrazolines plays an crucial role in
the selective production of alkylidenecyclubutanes, although the
energy minimum path affords the corresponding 1,3-diradical.
Nonstatistical Dynamics Effects in the Denitrogenation of
1-Pyrazolines. To study the question of dynamics effects, the
transition-states of the concerted denitrogenation, TSa, TSa110a,
TSa110b, were used as starting points for trajectory calculations
using a Bohn-Oppenheimer molecular dynamics (BOMD)
model17 at the UB3LYP/6-31G(d) level of theory, 0.2-fs steps
(Scheme 5). The direct dynamics trajectories were initiated with
conditions chosen from a 353 K Boltzmann distribution for the
reaction coordinate translation.18 Although the energy minimum
pathway from the denitrogenation transition-state involves
generating the 1,3-diradical, that is, the precursor of the
spiropentane derivative, the chemical dynamics calculations
showed that two products, 1,3-diradical and alkylidenecyclobu-
tane, were formed from the transition state. From the transition
state TSa, 1 out of 10 trajectories afforded the starting
Effects of an Electron-Withdrawing Group at C3 on the
Selective Formation of Alkylidenecyclobutane Derivatives
in the Denitrogenation of 1-Pyrazoline. To obtain information
on the role of the electron-withdrawing substituent at C3 on
changing the product distribution in the denitrogenation reac-
tions, spiropentane versus alkylidenecyclobutane, the singlet-
triplet energy gaps (∆EST in kcal/mol ) ES - ET) were
calculated for the 2-spirocyclopropane-substituted propane-1,3-
diyls DR1 (Z ) H) and DR10b (Z ) CO2Me) at the UB3LYP/
6-31G(d) level of theory, in which the magnitude of the
hyperconjugative interaction19 between the symmetric nonbond-
ing molecular orbital (ψS) of the diyl and the C-C σ orbital of
the cyclopropane ring can be evaluated precisely (Scheme 7).
(15) Metiu, H.; Ross, J.; Silbey, R.; Grorge, T. F. J. Chem. Phys. 1974, 61,
3200-3209. Shaik, S.; Danovich, D.; Sastry, G. N.; Ayala, P. Y.; Schlegel,
H. B. J. Am. Chem. Soc. 1997, 9237-9245. Sastry, G. N.; Shaik, S. J. Am.
Chem. Soc. 1998, 120, 2131-2147.
(16) (a) Carpenter, B. K. J. Am. Chem. Soc. 1995, 117, 6336-6344. (b)
Carpenter, B. K. J. Am. Chem. Soc. 1996, 118, 10329-10330. (c) Levine,
R. D. Pure and Appl. Chem. 1997, 69, 83-90. (d) Doubleday, C., Jr.;
Bolton, K.; Hase, W. L. J. Am. Chem. Soc. 1997, 119, 5251-5252. (e)
Carpenter, B. K. Angew. Chem., Int. Ed. 1998, 37, 3340-3350. (f)
Doubleday, C., Jr.; Bolton, K.; Hase, W. L. J. Phys. Chem. A 1998, 102,
3648-3658. (g) Doubleday, C. J. Phys. Chem. A 2001, 105, 6333-6341.
(h) Sun, L.; Hase, W. L.; Song, K. J. Am. Chem. Soc. 2001, 123, 5753-
5756. (i) Mann, D. J.; Hase, W. L. J. Am. Chem. Soc. 2002, 124, 3208-
3209. (j) Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W. T. J.
Am. Chem. Soc. 2002, 124, 7896-7897. (k) Ammal, S. C.; Yamataka, H.;
Aida, M.; Dupuis, M. Science 2003, 299, 1555-1557. (l) Singelton, D.
A.; Hang, C.; Szymanski, M. J.; Greenwald, E. E. J. Am. Chem. Soc. 2003,
125, 1176-1177. (m) Bekele, T.; Christian, C. F.; Lipton, M. A.; Singleton,
D. A. J. Am. Chem. Soc. 2005, 127, 9216-9223. (n) Suhrada, C. P.; Selcuki,
C.; Nendel, M.; Cannizzaro, C.; Houk, K. N.; Rissing, P.-J.; Baumann, D.;
Hasselmann, D. Angew. Chem., Int. Ed. 2005, 44, 3548-3552. (o) Northrop,
B. H.; Houk, K. N. J. Org. Chem. 2006, 71, 3-13. (p) Polo, V.; Domingo,
L. R.; Andres, J. J. Org. Chem. 2006, 71, 754-762. (q) Doubleday, C.;
Suhrada, C. P.; Houk, K. N. J. Am. Chem. Soc. 2006, 128, 90-94. (r)
Ussing, B. R.; Hang, C.; Singleton, D. A. J. Am. Chem. Soc. 2006, 128,
7594-7607. (s) Ammal, S. C.; Yamataka, H. Eur. J. Org. Chem. 2006,
4327-4330. (t) Carpenter, B. K. Chem. Soc. ReV. 2006, 35, 736-747. (u)
Vayner, G.; Addepalli, S. V.; Song, K.; Hase, W. L. J. Chem. Phys. 2006,
125, 014317. (u) Yamataka, H.; Aida, M.; Dupuis, M. Chem. Phys. Lett.
1999, 300, 583-587. (v) Yamataka, H.; Aida, M.; Dupuis, M. Chem. Phys.
Lett. 2002, 353, 310-316.
The parent 1,3-diradical DR1 was calculated to be the triplet
ground-state molecule, ∆EST ) +1.5 kcal/mol. The value for
the preference for the triplet state is close to the CASPT2 value12
of +2.0 kcal/mol.20 In contrast, the singlet ground state was
calculated for the carbomethoxy-substituted diradical DR10b,
(19) The hyperconjugation effects on the singlet-triplet energy gap in propane-
1,3-diyls, see: (a) Getty, S. J.; Hrovat, D. A.; Borden, W. T. J. Am. Chem.
Soc. 1994, 116, 1521-1527. (b) Borden, W. T. Chem. Commun. 1998,
1919-1925. (c) Shelton, G. R.; Hrovat, D. A.; Borden, W. T. J. Org. Chem.
2006, 71, 2982-2986. (d) Abe, M.; Adam, W.; Hara, M.; Hattori, M.;
Majima, T.; Nojima, M.; Tachibana, K.; Tojo, S. J. Am. Chem. Soc. 2002,
124, 6540-6541. (e) Abe, M.; Hattori, M.; Takegami, A.; Masuyama, A.;
Hayashi, T.; Seki, S.; Tagawa, S. J. Am. Chem. Soc. 2006, 128, 8008-
8014. (f) Abe, M.; Kubo, E.; Nozaki, K. Angew. Chem., Int. Ed., 2006, 45,
7828-7831.
(17) (a) Helgaker, T.; Uggerud, E.; Jensen, H. J. A. Chem. Phys. Lett. 1990,
173, 145. (b) Uggerud, E.; Helgaker, T. J. Am. Chem. Soc. 1992, 114,
4265. (c) Tuckerman, M. E.; Ungar, P. J.; von Rosenvinge, T.; Klein, M.
L. J. Phys. Chem. 1996, 100, 12878. (d) Millam, J. M.; Bakken, V.; Chen,
W.; Hase, W. L.; Schlegel, H. B. J. Chem. Phys. 1999, 111, 3800. (e) Li,
X.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 2000, 113, 10062.
(18) Peslherbe, G. H.; Wang, H.; Hase, W. L. AdV. Chem. Phys. 1999, 105,
171-201.
(20) Jain, R.; McElwee-White, L.; Dougherty, D. A. J. Am. Chem. Soc. 1988,
110, 552-560.
9
J. AM. CHEM. SOC. VOL. 129, NO. 43, 2007 12985