LETTER
56-Membered Macrocycle
(9) (a) Characterization of 1
2297
The macrocycle 6 obtained by either of the two protocols
is characterized by its 1H NMR and 13C NMR, elemental
analysis as well as positive ESI-MS spectrum. The latter
shows the dominating peak at m/z = 1135.4 which is as-
signed to the protonated species [6·H]+ (sprayed from
chloroform–methanol).13
Mp 198 °C. 1H NMR (400 MHz, CDCl3): d = 7.58 (d,
3J = 8.5 Hz, 4 H, Har), 7.53 (d, 3J = 8.5 Hz, 4 H, Har), 7.49 (d,
3J = 8.8 Hz, 4 H, Har), 7.15 (s, 2 H, Har), 6.92 (d, 3J = 8.8 Hz,
4 H, Har), 5.86 (ddt, 3Jtrans = 17.0 Hz, 3Jcis = 10.4 Hz, 3J = 6.7
Hz, 2 H, HC=), 5.12 (dm, 3Jtrans = 17.0 Hz, 2 H, =CHtrans),
5.05 (dm, 3Jcis = 10.4 Hz, 2 H, =CHcis), 4.00 (t, 3J = 6.7, 4 H,
CH2), 2.51 (q, 3J = 6.7, 4 H, CH2), 1.28 (s, 9 H, t-Bu). 13
C
Our results show that the huge cyclophane 6 can be ob-
tained in a ring-closing metathesis with subsequent reduc-
tion of the double bonds in 21% yield starting with the
simple pre-organized building block 1. On the other hand,
the templated reaction is superior to this short-step proto-
col due to avoiding oligomeric/polymeric side products
during the ring-closing metathesis. Imination of 1 (2
equiv) with terephthalic dialdehyde followed by RCM
and subsequent hydrogenation of the double bond accom-
panied by removal of the template affords the macrocycle
6 in an overall yield of 43%.
NMR (100 MHz, CDCl3): d = 158.5 (C), 141.7 (C), 139.7
(C), 138.3 (C), 137,5 (C), 134.4 (CH), 133.2 (C), 129.8
(CH), 128.0 (CH), 127.8 (C), 127.0 (CH), 126.9 (CH), 117.1
(CH2), 114.9 (CH), 67.4 (CH2), 34.2 (C), 33.8 (CH2), 31.7
(CH3). MS (EI, 70 eV): m/z (%) = 593.3 (100) [M+,
+
C42H43NO2 ], 578.2 (97), 538.2 (3), 523.2 (12). Anal. Calcd
for C42H43NO2·0.5 H2O: C, 83.68; H, 7.36; N, 2.32. Found:
C, 83.76; H, 7.35; N, 2.11. X-ray crystal structure analysis
for 1: formula C42H43NO2, M = 593.77, colorless crystal
0.30 × 0.10 × 0.10 mm, a = 9.656(1), b = 35.774(1),
c = 9.666(1) Å, V = 3339.0(5) Å3, rcalc = 1.181 g cm–3,
m = 0.549 mm–1, empirical absorption correction (0.853 ≤ T
≤ 0.947), Z = 4, orthorhombic, space group Pnma (No. 62),
l = 1.54178 Å, T = 223 K, ω and ϕ scans, 13160 reflections
collected (±h, ±k, ±l), [(sinq)/λ] = 0.60 Å–1, 2693
independent (Rint = 0.047) and 2683 observed reflections [I
≤ 2 σ(I)], 215 refined parameters, R = 0.081, wR2 = 0.246,
max. residual electron density 0.35 (–0.20) e Å–3, hydrogen
atoms are calculated and refined riding.
The presented building block 1 and its macrocyclization
will be further studied by us in order to get a deeper in-
sight in the underlying templating process, and to apply
the findings in the preparation of topologically interesting
molecules. In addition, 6 will be tested as macrocyclic
receptor for small organic molecules.
Data set was collected with a Nonius KappaCCD
diffractometer. Programs used: data collection COLLECT
(Nonius B.V., 1998), data reduction Denzo-SMN,9b
absorption correction Denzo,9c structure solution SHELXS-
97,9d structure refinement SHELXL-97 (G. M. Sheldrick,
Universität Göttingen, 1997), graphics SCHAKAL (E.
Keller, Universität Freiburg, 1997).
Acknowledgment
This work was supported by the Deutsche Forschungsgemeinschaft
(Al 410/13-1) and the Fonds der Chemischen Industrie.
CCDC 649216 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 (1223)336033, E-mail:
deposit@ccdc.cam.ac.uk]. (b) Otwinowski, Z.; Minor, W.
Methods in Enzymology 1997, 276, 307. (c) Otwinowski,
Z.; Borek, D.; Majewski, W.; Minor, W. Acta Crystallogr.,
Sect. A: Fundam. Crystallogr. 2003, 59, 228. (d) Sheldrick,
G. M. Acta Crystallogr., Sect. A: Fundam. Crystallogr.
1990, 46, 467.
References and Notes
(1) (a) Pedersen, C. Angew. Chem., Int. Ed. Engl. 1988, 27,
1021; Angew. Chem. 1988, 100, 1053. (b) Macrocyclic
Chemistry – Current Trends and Future Perspectives; Gloe,
K., Ed.; Springer: Dordrecht, 2005.
(2) Parker, D. Macrocycle Synthesis: A Practical Approach;
Oxford University Press: Oxford, 1996.
(3) Anderson, S.; Anderson, H. L.; Bashall, A.; McPartlin, M.;
Sanders, J. K. M. Angew. Chem., Int. Ed. Engl. 1995, 34,
1096; Angew. Chem. 1995, 107, 1196.
(10) Grubbs, R. H. Angew. Chem. Int. Ed. 2006, 45, 3760;
Angew. Chem. 2006, 118, 3845.
(11) Lautens, M.; Tayama, E.; Herse, C. J. Am. Chem. Soc. 2005,
127, 72.
(12) Bedard, T. C.; Moore, J. S. J. Am. Chem. Soc. 1995, 117,
10662.
(13) Characterization of 6
(4) For a recent example, see: Becker, K.; Lagoudakis, P. G.;
Gaefke, G.; Höger, S.; Lupton, J. M. Angew. Chem. Int. Ed.
2007, 46, 3450; Angew. Chem. 2007, 119, 3520.
(5) For selected reviews, see: (a) Laughrey, Z. R.; Gibb, B. C.
Top. Curr. Chem. 2005, 249, 67. (b) Hoss, R.; Vögtle, F.
Angew. Chem., Int. Ed. Engl. 1994, 33, 375; Angew. Chem.
1994, 106, 389.
Mp >250 °C. 1H NMR (300 MHz, CDCl3): d = 7.53 (d,
3J = 8.4 Hz, 8 H, Har), 7.49–7.40 (m, 16 H, Har), 7.12 (s, 4 H,
Har), 6.86 (d, 3J = 8.7 Hz, 8 H, Har), 3.98 (t, 3J = 6.2 Hz, 8 H,
CH2), 1.82 (m, 8 H, CH2), 1.53 (m, 8 H, CH2), 1.26 (s, 18 H,
t-Bu). 13C NMR (75 MHz, CDCl3): d = 158.7 (C), 141.0 (C),
139.6 (C), 138.5 (C), 138.4 (C), 133.1 (C), 129.8 (CH),
128.0 (CH), 127.3 (C), 127.0 (CH), 126.6 (CH), 115.0 (CH),
67.5 (CH2), 34.1 (C), 31.6 (CH3), 28.6 (CH2), 25.0 (CH2).
ESI-MS (+): m/z = 1135.4 [MH+, C80H82N2O4 + H+]. Anal.
Calcd for C80H82N2O4·H2O: C, 83.30; H, 7.34; N, 2.43.
Found: C, 83.47; H, 7.37; N, 1.99.
(6) Camacho, D. H.; Salo, E. V.; Guan, Z. Org. Lett. 2004, 6,
865.
(7) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh,
M.; Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314.
(8) Miura, Y.; Oka, H.; Momoki, M. Synthesis 1995, 1419.
Synlett 2007, No. 14, 2295–2297 © Thieme Stuttgart · New York