couplings,3-4,7 usually the Ullmann reaction, are the most widely
used for access to 2,2′-bipyrroles. Due to the drastic conditions
of the Ullmann coupling reaction, sensitive substituents (such
as formyl groups), cannot be carried through intact; thus, direct
access to compound 1 is not possible. Since the original
preparation of compounds of type 1 by Vogel and co-workers2
during their synthesis of porphycene 2, only a few variants of
the seminal synthetic methodology have been described.3,7 All
except one8 are based on the Ullmann-type dimerization of a
preformed halopyrrole (Scheme 1).
Improved Synthesis of Functionalized
2,2′-Bipyrroles
Lijuan Jiao, Erhong Hao, M. Grac¸a H. Vicente, and
Kevin M. Smith*
Department of Chemistry, Louisiana State UniVersity,
Baton Rouge, Louisiana 70803
Synthesis of 1, as reviewed in detail in the literature,8
normally requires four key steps: (1) Ullmann coupling of a
2-iodopyrrole-5-carboxylic ester, (2) hydrolysis of the diester,
(3) decarboxylation of the resulting 5,5′-dicarboxylic acid, and
(4) Vilsmeier-type diformylation. The Ullmann synthesis of
biaryls by the copper-induced reductive coupling of aromatic
halides is of broad synthetic use.9a Although some substrates
will undergo Ullmann reductive coupling under mild conditions,
the typical Ullmann coupling is conducted at high temperature.9b
Ullmann-type reductive couplings of pyrroles are best when
there is one or more electron-withdrawing group present; high
temperature is usually required.9b
Recently, Liebeskind and co-workers reported an ambient-
temperature Ullmann-type coupling reaction,9c but the require-
ment of specific type of substrates or specific positions of the
substituent limits its synthetic application. They stated that the
“most noticeable limitation of this process is the lack of reaction
of aromatic halide substrates not possessing a coordinating ortho-
substituent”.9c Sessler et al.7a developed an efficient procedure
for the preparation of alkyl-substituted 2,2′-bipyrroles by
protection of the pyrrole nitrogen atom before an Ullmann-type
coupling reaction; this was followed by deprotection of the
resulting N-substituted 2,2′-bipyrroles. Vogel7b et al. later
improved the Sessler method by changing the solvent from DMF
to toluene. Since the nature of substituents on the pyrrole ring
greatly influences the performance of the literature reactions,
thus precluding the synthesis of some attractive target com-
pounds, the current number of compounds 1 is still very small.
The above synthetic limitations encouraged us to develop a
new expedited methodology for the synthesis of bipyrroles 1.
Inspired by the rapidly developing field of metal-catalyzed
coupling reactions, and especially some recently developed
palladium-catalyzed couplings of aryl halides under mild
ReceiVed June 19, 2007
A series of 2,2′-bipyrroles has been efficiently synthesized
using an improved synthetic approach based on Pd(0)-
catalyzed homocoupling of various 2-iodopyrroles. This new
synthetic approach takes place at room temperature and in
the presence of water. Functional groups such as formyl,
ester, and nitrile are able to survive these reaction conditions.
Solvents are found to play an important role in this reaction.
The 2,2′-bipyrrole motif occurs in a number of polypyrrole
pigments, many of which have attracted increasing attention in
coordination chemistry, medicinal chemistry, and material
science.1 5,5′-Diformyl-2,2′-bipyrroles 1 are key synthetic
precursors for porphycene 2,2,3 sapphyrin 3,4 and other expanded
porphyrin analogues.5 Available synthetic routes to 2,2′-bipyr-
roles are limited3-4,6-7 to oxidative coupling and reductive
coupling methodologies. Oxidative coupling6 works only in a
limited number of cases and often in low yield, so reductive
(1) (a) The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard,
R., Eds.; Academic Press: San Diego, 2000; Vol 6. (b) Gale, P. A.;
Anzenbacher, P., Jr.; Sessler, J. L. Coord. Chem. ReV. 2001, 222, 57. (c)
Kleemann, A.; Engl, J.; Kutscher, B.; Reichert, D. Pharmaceutical
Substances: Synthesis, Patents, Applications, 4th ed.; Georg Thieme:
Stuttgart, 2001.
(2) (a) Vogel, E.; Kocher, M.; Schmickler, H.; Lex, J. Angew. Chem.,
Int. Ed. Engl. 1986, 25, 257. (b) Sessler, J. L.; Weghorn, S. J. Expanded,
Contracted and Isomeric Porphyrins; Pergamon: New York, 1997.
(3) (a) Vogel, E.; Balci, M.; Kakumanu, P.; Kogh, P.; Lex, J.; Ermer,
O. Angew. Chem., Int. Ed. Engl. 1987, 26, 928. (b) Nonell, S.; Bou, N.;
Borrell, J. I.; Teixido, J.; Villanueva, A.; Juarranz, A,; Canete, M.
Tetrahedron Lett. 1995, 36, 3405. (c) Gavalda, A.; Borrell, J. I.; Teixido,
J.; Nonell, S.; Arad, O.; Grau, R.; Canete, M.; Juarranz, A,; Villanueva,
A.; Stockert, J. C. J. Porphyrins Phthalocyanines 2001, 5, 846. (d) Richert,
C.; Wessels, J. W.; Muller, M.; Kisters, M.; Benninghaus, T.; Goetz, A. Z.
J. Med. Chem. 1994, 37, 2797. (e) Hayashi, T.; Dejima, H.; Matsuo, T.;
Sato, H.; Murata, D.; Hisaeda, Y. J. Am. Chem. Soc. 2002, 124, 11226. (f)
Hayashi, T.; Nakashima, Y.; Ito, K.; Ikegami, T.; Aritome, I.; Suzuki, A.;
Hisaeda, Y. Org. Lett. 2003, 5, 2845.
(4) (a) Bauer, V. J.; Clive, D. L. J.; Dolphin, D.; Paine, J. B., III; Harris,
F. L.; King, M. M.; Loder, J.; Wang, S-W. C.; Woodward, R. B. J. Am.
Chem. Soc. 1983, 105, 6429. (b) Broadhurst, M. J.; Grigg, R.; Johnson, A.
W. J. Chem. Soc., Perkin Trans. 1 1972, 2111. (c) Sessler, J. L.; Cyr, M.
J.; Lynch, V.; McGhee, E.; Ibers, J. A. J. Am. Chem. Soc. 1990, 112, 2810.
(d) Schevchuk, S. V.; Davis, J. M.; Sessler, J. L. Tetrahedron Lett. 2001,
42, 2447. (e) Sessler, J. L.; Cyr, M.; Burrell, A. K. Tetrahedron 1992, 48,
9661.
(5) (a) Sessler, J. L.; An, D.; Cho, W.-S.; Lynch, V. Angew. Chem., Int.
Ed. 2003, 42, 2278. (b) Setsune, J.-I.; Tsukajima, A.; Watanabe, J.
Tetrahedron Lett. 2006, 47, 1817. (c) Geier, G. R., III.; Grindrod, S. C. J.
Org. Chem. 2004, 69, 6404. (d) Decre´au, R. A.; Collman, J. P. Tetrahedron
Lett. 2003, 44, 3323.
(6) (a) Ceacareanu, D. M.; Gerstenberger, M. R. C.; Haas, A. J.
Heterocycl. Chem. 1985, 22, 281. (b) Wasserman, H. H.; Petersen, A. K.;
Xia, M.; Wang, J. Tetrahedron Lett. 1999, 40, 7567. (c) Oda, K.; Sakai,
M.; Ohno, K.; Machida, M. Heterocycles 1999, 40, 277. (d) Dohi, T.;
Morimoto, K.; Maruyama, A.; Kita, Y. Org. Lett. 2006, 8, 2007.
(7) (a) Sessler, J. L.; Hoehner, M. C. Synlett 1994, 3, 211. (b) Vogel,
E.; Deponte, R. U.S. Patent, 5,756,724. (c) Skowronek, P.; Lightner, D. A.
Monatsh. Chem. 2003, 134, 889. (d) Furstner, A.; Radkowski, K.; Peters,
H. Angew. Chem., Int. Ed. 2005, 44, 2777.
(8) Arad, O.; Morros, J.; Batllori, X.; Teixido, J.; Nonell, S.; Borrell, J.
I. Org. Lett. 2006, 8, 847.
(9) (a) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. ReV. 2002, 102, 1359. (b) Grigg, R.; Johnson, A. W.; Wasley, J. W.
F. J. Chem. Soc. 1963, 359. (c) Zhang, S.; Zhang, D.; Liebeskind, L. S. J.
Org. Chem. 1997, 62, 2312.
10.1021/jo701310k CCC: $37.00 © 2007 American Chemical Society
Published on Web 09/21/2007
J. Org. Chem. 2007, 72, 8119-8122
8119