Angewandte
Chemie
Table 1: Folding data for diesters 8, 9, and 10 at 298 K.[a]
including halogen bonds, cation–p interaction, and salt
bridges.
Entry
Ester
R
DGfold (CDCl3)
DGfold (D2O)
[kcalmolÀ1
]
[kcalmolÀ1
]
Received: March 1, 2007
Published online: August 3, 2007
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
8a
9a
10a
8b
9b
10b
8c
9c
10c
8d
9d
10d
8e
(CH3)2HC-
(CH3)2HC-
(CH3)2HC-
(CH3)3C-
(CH3)3C-
(CH3)3C-
cyclohexyl
cyclohexyl
cyclohexyl
1-adamantyl
1-adamantyl
1-adamantyl
2-adamantyl
2-adamantyl
2-adamantyl
H3C-
0.50
0.50
0.50[c]
0.65
0.65
0.65[c]
0.36
0.36
0.36[c]
0.36
0.36
0.36[c]
0.55
0.55
0.55[c]
0.0
i[b]
i[b]
Keywords: conformation analysis · Gibbs energy ·
0.72
.
i[b]
hydrophobic interactions · protein folding · solvent effects
i[b]
0.92
i[b]
i[b]
[1]a) L. Pauling, R. B. Corey, Nature 1951, 168, 550 – 551; b) Y.
Nozaki, C. Tanford, J. Biol. Chem. 1971, 246, 2211 – 2217;
c) M. D. Joesten, L. J. Schaad, Hydrogen Bonding, Marcel
Dekker, New York, 1974.
[2]a) W. Kauzmann, Adv. Protein. Chem. 1959, 14, 1 – 63; b) C. B.
Anfinsen, Science 1973, 181, 223 – 230; c) R. R. Gardner, L. A.
Christianson, S. H. Gellman, J. Am. Chem. Soc. 1997, 119, 5041 –
5042.
[3]a) S. K. Burley, G. A. Petsko, J. Am. Chem. Soc. 1986, 108, 7995 –
8001; b) K. Kobayashi, Y. Asakawa, Y. Kikuchi, H. Toi, Y.
Aoyama, J. Am. Chem. Soc. 1993, 115, 2648 – 2654; c) C. A.
Hunter, Philos. Trans. R. Soc. London Ser. A 1993, 345, 77 – 85;
d) C. T. Chen, J. S. Siegel, J. Am. Chem. Soc. 1994, 116, 5959;
e) M. Nishio, Y. Umezawa, M. Hirota, Y. Takeuchi, Tetrahedron
1995, 51 8665 – 8701; f) M. L. Waters, Curr. Opin. Chem. Biol.
2002, 6, 736 – 741; g) E. A. Meyer, R. K. Castellano, F. Die-
derich, Angew. Chem. Int. Ed. 2003, 42, 1210 – 1250; h) M.
Nishio, CrystEngComm 2004, 6, 130 – 158; i) S. Lavieri, J. A.
Zoltewicz, J. Org. Chem. 2001, 66, 7227 – 7230; j) W. B. Jennings,
B. M. Farrell, J. F. Malone, Acc. Chem. Res. 2001, 34, 885 – 894;
k) D. E. Anderson, J. H. Hurley, H. Nicholson, W. A. Baase,
B. W. Matthews, Protein Sci. 1993, 2, 1285 – 1290; l) R. O. Gould,
A. M. Gray, P. Taylor, M. D. Walkinshaw, J. Am. Chem. Soc.
1985, 107, 5921 – 5927; m) R. Ehama, M. Tsushima, T. Yuzuri, H.
Suezawa, K. Sakakibara, M. Hirota, Bull. Chem. Soc. Jpn. 1993,
66, 814 – 818.
0.67
i[b]
i[b]
0.68
i[b]
9e
10e
8 f
9 f
10 f
i[b]
0.9
i[b]
H3C-
H3C-
0.0
i[b]
0.0[c]
0.0
[a] Free-energy change upon folding calculated from the observed
equilibrium constant determined by integration and NMR line-shape
analysis. Samples were at 0.1 mm concentration. [b] Not soluble. [c] The
methyl ester of the free acid was used.
starting geometries were generated and geometry optimiza-
tions were carried out on each (MMFF and Eng–Huber force
fields). The ASA for conformations lying within 1 kcalmolÀ1
of the global minimum were Boltzmann averaged to provide
an average ASA for the ensemble of conformations contri-
buting to the folding states.
The values of the calculated g ranged from 5 to 30 calm-
olÀ1 2. These values of g lie in the low end of the range that
was expected based on prior work. The breadth of the
calculated values arises owing to uncertainties in the calcu-
lation of the surface areas for small molecules, which is where
we are attempting to see the finest details of the hydrophobic
effect. We look forward to creating molecular torsion
balances that evaluate larger nonpolar surface changes. It
will be especially interesting to evaluate future data in
comparison with predictions made by the Lum-Chandler-
Weeks theory of hydrophobicity. An intriguing aspect of this
important theory is that the value of g is expected to change
with the area of the nonpolar surface—water in contact with
small nonpolar surfaces is predicted to have a lower excess
energy (per square angstrom) than water in contact with more
extensive nonpolar surfaces, a prediction not opposed to our
results.[27]
This study demonstrates that even very small models of
proteins are influenced by the effects of water on folding. We
have described the synthesis and initial evaluation of a water
soluble molecular torsion balance that exhibits two-state
folding. We find that despite the small changes in solvent-
accessible area that accompany folding, the effect of water on
folding is clearly evident. The new torsion balance we present
herein can serve as a versatile tool for precise quantitative
studies of other important effects on folding and drug binding,
[4]a) D. A. Dougherty, D. A. Stauffer, Science 1990, 250, 1558 –
1560; b) M. M. S. L. Mowbray, J. Mol. Biol. 1994, 235, 709 –
717; c) K. S. Kim, J. Y. Lee, S. J. Lee, T.-K. Ha, D. H. Kim, J.
Am. Chem. Soc. 1994, 116, 7399 – 7400; d) S. M. Ngola, D. A.
Dougherty, J. Org. Chem. 1998, 63, 4566 – 4567; e) S. Bartoli, S.
Roelens, J. Am. Chem. Soc. 2002, 124, 8307 – 8315; f) E. Cubero,
M. Orozco, F. J. Luque, J. Phys. Chem. A 1999, 103, 315 – 321;
g) C. Felder, H.-L. Jiang, W.-L. Zhu, K.-X. Chen, I. Silman, S. A.
Botti, J. L. Sussman, J. Phys. Chem. A 2001, 105, 1326 – 1333.
[5]a) D. S. C. Reid, P. F. Lindley, J. M. Thornton, FEBS Lett. 1985,
190, 209 – 213; b) S. K. Burley, G. A. Petsko, FEBS Lett. 1986,
203, 139 – 143; c) K. Oku, H. Watanabe, M. Kubota, S. Fukuda,
M. Kurimoto, Y. Tsujisaka, M. Komori, Y. Inoue, M. Sakurai, J.
Am. Chem. Soc. 2003, 125, 12739 – 12748; d) M. Sulpizi, P.
Carloni, J. Phys. Chem. B 2000, 104, 10087 – 10091; e) N. S.
Scrutton, A. R. C. Raine, Biochem. J. 1996, 319, 1 – 8.
[6]a) G. Xiao, S. Liu, X. Ji, W. W. Johnson, J. Chen, J. F. Parsons,
W. J. Stevens, G. L. Gilliland, R. N. Armstrong, Biochemistry
1996, 35, 4753 – 4765; L. Jiang, L. Lai, J. Biol. Chem. 2002, 277,
37732 – 37740; b) S. Scheiner, T. Kar, Y. Gu, J. Biol. Chem. 2001,
276, 9832 – 9837.
[7]a) W. C. Wimley, K. Gawrisch, T. P. Creamer, S. H. White, Proc.
Natl. Acad. Sci. USA 1996, 93, 2985 – 2990; b) R. Luo, L. David,
H. Hung, J. Devaney, M. K. Gilson, J. Phys. Chem. B 1999, 103,
727 – 736; c) S. Kumar, R. Nussinov, J. Mol. Biol. 1999, 293,
1241 – 1255; d) S. E. Kiehna, M. L. Waters, Protein Sci. 2003, 12,
2657 – 2667; e) Q. Kaas, A. Aumelas, S. Kubo, N. Chino, Y.
Kobayashi, L. Chiche, Biochemistry 2002, 41, 11099 – 11108;
f) M. P. Aliste, J. L. MacCallum, D. P. Tieleman, Biochemistry
Angew. Chem. Int. Ed. 2007, 46, 6833 –6836
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6835