10.1002/anie.202015077
Angewandte Chemie International Edition
RESEARCH ARTICLE
J. Armstrong, J. R. Frost, N. G. Stevenson, T. J. Donohoe, J. Am. Chem.
Soc. 2018, 140, 11916; d) D. S. Chung, J. S. Lee, H. Ryu, J. Park, H.
Kim, J. H. Lee, U. Bin Kim, W. K. Lee, M. H. Baik, S. gi Lee, Angew.
Chemie. Int. Ed. 2018, 57, 15460; Angew. Chemie. 2018, 130, 15686; e)
R. J. Armstrong, W. M. Akhtar, T. A. Young, F. Duarte, T. J. Donohoe,
Angew. Chemie. Int. Ed. 2019, 58, 12558; Angew. Chem. 2019,
131,12688; f) D. M. J. Cheang, R. J. Armstrong, W. M. Akhtar, T. J.
Donohoe, Chem. Commun. 2020, 56, 3543; g) C. B. Cheong, J. R. Frost,
T. J. Donohoe, Synlett. 2020, 31, 1824; h) S. Wꢀbbolt, C. B. Cheong, J.
R. Frost, K. E. Christensen, T. J. Donohoe, Angew. Chem. Int. Ed. 2020,
59, 11339; Angew. Chem. 2020, 132, 11435.
P. Antonchick, Angew. Chem. Int. Ed. 2015, 54, 14845; Angew. Chem.
2015, 127, 15058; k) Z.-Z. Zhang, Y.-Q. Han, B.-B. Zhan, S. Wang, B.-F.
Shi, Angew. Chem. Int. Ed. 2017, 56, 13145; Angew. Chem. 2017, 129,
13325; l) A. Clemenceau, P. Thesmar, M. Gicquel, A. Le Flohic, O.
Baudoin, J. Am. Chem. Soc. 2020, 142, 15355.
[30] M. Gulías, J. L. Mascareñas, Angew. Chem. Int. Ed. 2016, 55, 11000;
Angew. Chem. 2016,128, 11164.
[31] For selected examples of cyclopropanation of α,β-unsaturated
carbonyls: a) E. J. Corey, M.Chaykovsky, J. Am. Chem. Soc. 1965, 87,
1353; b) R. K. Kunz, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127,
3240; c) C. D. Papageorgiou, M. A. Cubillo De Dios, S. V. Ley, M. J.
Gaunt, Angew. Chemie. Int. Ed. 2004, 43, 4641; Angew.Chem. 2004,
116, 4741; d) Y. Chen, J. V. Ruppel, X. P. Zhang, J. Am. Chem.
Soc. 2007, 129, 12074; e) H. Xie, L. Zu, H. Li, J. Wang, W. Wang, J. Am.
Chem. Soc. 2007, 129, 10886; f) S. L. Riches, C. Saha, N. F. Filgueira,
E. Grange, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem.
Soc. 2010, 132, 7626; g) L. Gao, G. S. Hwang, D. H. Ryu, J. Am. Chem.
Soc. 2011, 133, 20708; h) H. Wang, D. M. Guptill, A. Varela-Alvarez, D.
G. Musaev, H. M. L. Davies, Chem. Sci. 2013, 4, 2844; i) V. N. G.
Lindsay, D. Fiset, P. J. Gritsch, S. Azzi, A. B. Charette, J. Am. Chem.
Soc. 2013, 135, 1463.
[19] T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem.
Soc. Rev. 2016, 45, 546.
[20] An SN2-type mechanism has been also proposed with alkenyliodonium
reagents: M. Ochiai, S. Yamamoto, K. Sato, Chem. Commun. 1999,
1363.
[21] A reaction carried out with 1a and 2d in the presence of TEMPO (1.1
equiv.) under the standard conditions led to 3a in 77% isolated yield.
TEMPO adducts formed from a radical radical coupling were not
detected (GC/MS; NMR). Since TEMPO had not influence in the reaction
outcome, a radical pathway seems to be unlikely.
[22] a) D. F. Taber, R. E. Ruckle, J. Am. Chem. Soc. 1986, 108, 7686; b) M.
P. Doyle,L. J. Westrum, W. N. E. Wolthuis, M. M. See, W. P. Boone, V.
Bagheri, M. M. Pearson, J. Am. Chem. Soc. 1993, 115, 958; c) D. F.
Taber, K. K. You, A. L. Rheingold, J. Am. Chem. Soc. 1996, 118, 547.
[23] a) P. Yates, S. Danishefsky, J. Am. Chem. Soc. 1962, 84, 879. b) J.
Wrobel, K. Takahashi, V. Honkan, G. Lannoye, J. M. Cook, S. H. Bertz,
J. Org. Chem. 1983, 48, 139.
[32] a) V. M. Miskowski, W. P. Schaefer, B. Sadeghi, B. D. Santarsiero, H. B.
Gray, Inorg. Chem. 1984, 23, 1154; b) J. W. Trexler, A. F. Schreiner, F.
Albert Cotton, Inorg. Chem. 1988, 27, 3265; c) E. Warzecha, T. C. Berto,
C. C. Wilkinson, J. F. Berry, J. Chem. Educ. 2019, 96, 571.
[24] The group of Jianbo Wang observed a preferential 1,3 C-H carbene
insertion with β-tosyl α-diazocarbonyl compounds under Rh(II) catalysis.
The authors hypothesized that the intramolecular 1,3 C-H insertion is
likely to be due to conformational factors and the inhibition of the 1,2-
hydride migration may be due to the strongly electron-withdrawing tosyl
group. W. Shi, B. Zhang, J. Zhang, B. Liu, S. Zhang, J. Wang, Org. Lett.
2005, 7, 3103.
O
S
Ar
CO2Et
N2
O
S
1 mol %
Rh2(TFA)4
CO2Et
+
Ar
1
O
S
CO2Et
Me
O
Ar
O
3
DCE
75% yield
86:14
O
Me
5
Me
major
minor
Ar = pMe-C6H4
[25] For more experiments using other Rh(II) catalysts, see the Supporting
Information.
[26] A. DeAngelis, R. Panish, J. M. Fox, Acc. Chem. Res. 2016, 49, 115.
[27] For examples of ring-expansion of diazo compounds under metal
catalysis, see: a) H. Xu, W. Zhang, D. Shu, J. B. Werness, W. Tang,
Angew. Chem. Int. Ed. 2008, 47, 8933; Angew. Chem. 2008, 120, 9025.
b) S. Chen, Y. Zhao, J. Wang, Synthesis 2006, 2, 1705; c) A. M. Jadhav,
V. V. Pagar, R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809; Angew.
Chem. 2012, 124, 11979.
[28] For selected reviews in cyclopropane synthesis: a) H. Lebel, J. F.
Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977. b) C.
Ebner and E. M. Carreira, Chem. Rev. 2017, 117, 11651. c) W. Wu, Z.
Lin, H. Jiang, Org. Biomol. Chem. 2018, 16, 7315. d) A. G. Herraiz, M. G.
Suero, Synthesis 2019, 51, 2821.
[29] For examples of cyclopropane ring formation using one C–H bond: a) Y.
Oonishi, Y. Kitano, Y. Sato, Angew. Chem. Int. Ed. 2012, 51, 7305;
Angew. Chem. 2012, 124, 7417; b) J. Mao, S. Q. Zhang, B. F. Shi, W.
Bao, Chem. Commun. 2014, 50, 3692; c) T. Piou, T. Rovis, J. Am. Chem.
Soc. 2014, 136, 11292; d) W. Du, Q. Gu, Z. Li, D. Yang, J. Am. Chem.
Soc. 2015, 137, 1130; e) C. M. Weinstein, G. P. Junor, D. R. Tolentino,
R. Jazzar, M. Melaimi, G. Bertrand, J. Am. Chem. Soc. 2018, 140, 9255;
f) T. Piou, F. Romanov-Michailidis, M. A. Ashley, M. Romanova-
Michaelides, T. Rovis, J. Am. Chem. Soc. 2018, 140, 9587; g) C.
Duchemin, N. Cramer, Chem. Sci. 2019, 10, 2773. For examples of
cyclopropane ring formation using two C–H bonds: h) R. Giri, M. Wasa,
S. P. Breazzano, J. Q. Yu, Org. Lett. 2006, 8, 5685; i) P. Cotugno, A.
Monopoli, F. Ciminale, A. Milella and A. Nacci, Angew. Chem. Int. Ed.,
2014, 53, 13563; Angew. Chem. 2014, 126, 13781; j) S. Manna and A.
8
This article is protected by copyright. All rights reserved.