mediated triple bond activation: either through the formation
of a vinylidene complex or through the direct activation of the
π-bond. Because both activation methods are initiated from the
metal-alkyne complex,5 the coordination of an electron-rich
triple bond with a Lewis acid is regarded as the keystone of
this methodology.6 Conversely, the activation of electronically
deficient triple bonds with Lewis acids is hardly known.3d We
now report the activation of an electronically deficient triple
bond in gem-difluorohomopropargyl alcohol 1 using AgNO3
as a Lewis acid. This discovery has resulted in new syntheses
of fluorinated furan derivatives 2, 3, and 4.
We decided to choose gem-difluorohomopropargyl alcohol7
as a model because we envisaged a localized deactivation
through inductive effects, of which the gem-difluoropropargyl
group is capable of. As demonstrated by DFT calculations
(Figure 1), the two fluorine atoms modulate the electronic
density of the triple bond as compared with its nonfluorinated
counterpart.
Selective Synthesis of Fluorinated Furan
Derivatives via AgNO3-Catalyzed Activation of an
Electronically Deficient Triple Bond
Satoru Arimitsu and Gerald B. Hammond*
Department of Chemistry, UniVersity of LouisVille,
LouisVille, Kentucky 40292
gb.hammond@louisVille.edu
ReceiVed July 27, 2007
Another rationale for using fluorine is its impact on the
biological activities of furan systems. The anti-HIV agents 3,3-
gem-difluoromethylenated nucleoacids8 and the anticancer drug
Gemcitabine (2′-deoxy-2′-difluorocytidine), recently approved
for the treatment of pancreatic cancer,9 are cases in point.
Notwithstanding their potential usefulness, syntheses of
fluorofurans and fluorohydrofurans are still tedious and there
are no practical reactions that can generate substrate diversity.
Furthermore, there are no reports of catalytic synthesis of these
compounds.10
The transition metal-catalyzed direct activation of electron
deficient triple bonds was investigated by using the combined
electron withdrawing effects of two fluorine atoms to
modulate the electronic density of the triple bond. With use
of catalytic amounts of AgNO3 (10 mol %) the synthesis of
substituted 3,3-difluoro-4,5-dihydrofurans from gem-difluo-
rohomopropargyl alcohols occurred in excellent NMR yields.
Treatment of these dihydrofurans with SiO2 or Pd/H2 yielded
the corresponding 3-fluorinated furans and 3,3-difluorotet-
rahydrofurans.
(4) (a) Hashmi, A. S. K. Chem. ReV. 2007, 107, 3180-3211. (b) Hashmi,
A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990-6993. (c) Hashmi, A. S.
K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896-7936. (d)
Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200-203.
(5) (a) Birdwhistell, K. R.; Burgmayer, S. J. N.; Templeton, J. L. J. Am.
Chem. Soc. 1983, 105. (b) Bruce, M. I. Chem. ReV. 1991, 91, 197-257.
(c) Connelly, N. G.; Geiger, W. E.; Lagunas, M. C.; Metz, B.; Rieger, A.
L.; Rieger, P. H.; Shaw, M. J. J. Am. Chem. Soc. 1995, 117, 12202-12208.
(d) Nevado, C.; Echavarren, A. M. Synthesis 2005, 2, 167-182. (e) Bruneau,
C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006, 45, 2176-2203.
(6) (a) Nelson, J. H.; Wheelock, K. S.; Cusachs, L. C.; Jonassen, H. B.
J. Am. Chem. Soc. 1969, 91, 7005-7008. (b) Kasai, P. H.; McLeod, D. J.;
Watanabe, T. J. Am. Chem. Soc. 1980, 102, 179-190. (c) Hertwig, R. H.;
Koch, W.; Schroder, D.; Schwarz, H.; Hrusak, J.; Schwerdtfeger, P. J. Phys.
Chem. 1996, 100, 12253-12260. (d) Mingos, D. M. P. J. Orgnomet. Chem.
2001, 635, 1-8.
During the past decade there has been a concerted effort to
develop transition metals capable of activating the triple bond
to form new carbon-carbon bonds and carbon-heteroatom
bonds.1 It is well-known that complexes of group 11 metals
(Cu,2 Ag,3 Au4) can activate electron-rich triple bonds; especially
gold complexes have shown exceptional alkynophilicity under
mild conditions. There are two types of transition metal-
(7) (a) Arimitsu, S.; Hammond, G. B. J. Org. Chem. 2006, 71, 8665-
8668. (b) Kirihara, M.; Takuwa, T.; Takizawa, S.; Momose, T.; Nemoto,
H. Tetrahedron 2000, 56, 8275-8280. (c) Hanzawa, Y.; Inazawa, K.; Kon,
A.; Aoki, H.; Kobayashi, Y. Tetrahedron Lett. 1987, 28, 659-662.
(8) (a) Hertel, L. W.; Kroin, J. S.; Misner, J. W.; Tustin, J. M. J. Org.
Chem. 1987, 53, 2406-2409. (b) Patel, V. F.; Hardin, J. N.; Mastro, J. M.;
Law, K. L.; Zimmermann, J. L.; Ehlhardt, W. J.; Woodland, J. M.; Starling,
J. J. Bioconj. Chem. 1996, 7, 497-510. (c) Zhang, X.; Xia, H.; Dong, X.;
Jin, J.; Meng, W.-D.; Qing, F.-L. J. Org. Chem. 2003, 68, 9026-9033. (d)
Zhou, W.; Gumina, G.; Chong, Y.; Wang, J.; Schinazi, R. F.; Chu, C. K.
J. Med. Chem. 2004, 47, 3399-3408.
(9) (a) Kollmannsberger, C.; Nichols, C.; Bokemeyer, C. Cancer 2006,
106, 1217-1226. (b) Kose, M. F.; Meydanli, M. M.; Tulunay, G. Expert
ReV. Anticancer Ther. 2006, 6, 437-443. (c) Smith, I. E. Semin. Oncol.
2006, 33 (3, Suppl. 9), S19-S23. (d) Thigpen, T. Semin. Oncol. 2006, 33
(2, Suppl. 6), S26-S32.
(10) Noncatalytic versions are reported: For 3,3-difluorotetrahydro-
furane, see ref 7. For 3-fluorofurans, see: (a) Sham, H. L.; Betebenner, D.
A. J. Chem. Soc., Chem. Commun. 1991, 1134-1135. (b) Lee, K.; Zhou,
W.; Kelley, L.-L. C.; Momany, C.; Chu, C. K. Tetrahydron: Asymmetry
2002, 13, 1589-1598. (c) Moon, H. R.; Kim, H. O.; Jeong, L. S. J. Chem.
Soc., Perkin Trans. 1 2002, 1800-1804. (d) Xu, W.; Chen, Q.-Y. Org.
Biomol. Chem. 2003, 1, 1151-1156.
(1) Acetylene Chemistry; Diederich, F., Stang, P. J., Tykwinski, P. P.,
Eds.; Wiley-VHC: Weinheim, Germany, 2005. Organometallics in Syn-
thesis: A manual; Schlosser, M., Ed.; John Wiley & Sons, Ltd.: Chichester,
UK, 2002. ComprehensiVe Organometallic Chemistry II; Abel, E. W., Stone,
F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, UK, 1995; Vol. 12.
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, UK, 1991; Vol. 4. For Recent reviews on transition
metal catalyzed reaction with alkynes, see: Ojima, I.; Tzamarioudaki, M.;
Li, Z.; Donovan, R. J. Chem. ReV. 1996, 96, 635-662. (b) Muller, T. E.;
Beller, M. Chem. ReV. 1998, 98, 675-703. Aubert, C.; Buisine, O.;
Malacria, M. Chem. ReV. 2002, 102, 813-834. Alonso, F.; Beletskaya, I.
P.; Yus, M. Chem. ReV. 2004, 104, 3079-3159. Nakamura, I.; Yamamoto,
Y. Chem. ReV. 2004, 104, 2127-2198.
(2) (a) Ezquerra, J.; Pedregal, C.; Lamas, C. J. Org. Chem. 1996, 61,
5804-5812. (b) Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers, J. B.
Tetrahedron Lett. 1998, 39, 5159-5162.
(3) (a) Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1995, 60, 5966-
5968. (b) Qing, F.-L.; Gao, W.-Z.; Ying, J. J. Org. Chem. 2000, 65, 2003-
2006. (c) Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.;
Yoshida, Z. J. Am. Chem. Soc. 2000, 122, 7404-7405. (d) Harrison, T. J.;
Dake, G. R. Org. Lett. 2004, 6, 5023-5026. (e) Asao, N.; Yudha, S. S.;
Nogami, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2005, 44, 5526-5528.
10.1021/jo701616c CCC: $37.00 © 2007 American Chemical Society
Published on Web 10/02/2007
J. Org. Chem. 2007, 72, 8559-8561
8559