C O M M U N I C A T I O N S
Scheme 3. Proposed Pathway for C-N Bond Cleavage
Scheme 4. Proposed Mechanism for the Formation of 6
evidence for the corresponding reverse reaction. In other words,
guanidinates are not inert ligands in certain cases that can undergo
C-N bond cleavage to form carbodiimides and amido units.
Acknowledgment. This work was supported by grants from
the Research Grants Council of the Hong Kong SAR (Project No.
403805), NSFC/RGC Joint Research Scheme (N_CUHK 446/06),
and a Strategic Investments Scheme administrated by The Chinese
University of Hong Kong.
Supporting Information Available: Detailed experimental pro-
cedures, full characterization data, and X-ray data for 1, 4a, 5a‚C7H8,
5c‚C7H8, 6a, 6b, and 6c‚THF in cif format. This material is available
References
(1) (a) Bailey, P. H.; Pace, S. Coord. Chem. ReV. 2001, 214, 91-141. (b)
Chen, E. Y.-X.; Rodriguez-Delgado, A. In ComprehensiVe Organometallic
Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford,
2007; Vol. 4, pp 759-1004.
(2) Selected examples: (a) Jones, C.; Junk, P. C.; Platts, J. A.; Stasch, A. J.
Am. Chem. Soc. 2006, 128, 2206-2207. (b) Ong, T.-G.; Yap, G. P. A.;
Richeson, D. R. J. Am. Chem. Soc. 2003, 125, 8100-8101. (c) Holland,
A. W.; Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 9010-9011. (d)
Duncan, A. P.; Mullins, S. M.; Arnold, J.; Bergman, R. G. Organometallics
2001, 20, 1808-1819. (e) Ong, T.-G.; Yap, G. P. A.; Richeson, D. S.
Organometallics 2002, 21, 2839-2841. (f) Carmalt, C. J.; Newport, A.
C.; O’Neill, S. A.; Parkin, I. P.; White, A. J. P.; Williams, D. J. Inorg.
Chem. 2005, 44, 615-619. (g) Mullins, S. M.; Duncan, A. P.; Bergman,
R. G.; Arnold, J. Inorg. Chem. 2001, 40, 6952-6963. (h) Tin, M. K. T.;
Yap, G. P. A.; Richeson, D. S. Inorg. Chem. 1998, 37, 6728-6730. (i)
Brazeau, A. L.; Wang, Z.; Rowley, C. N.; Barry, S. T. Inorg. Chem. 2006,
45, 2276-2281. (j) Baunemann, A.; Winter, M.; Csapek, K.; Gemel, C.;
Fischer, R. A. Eur. J. Inorg. Chem. 2006, 4665-4672. (k) Ong, T.-G.;
Yap, G. P. A.; Richeson, D. R. Chem. Commun. 2003, 2612-2613. (l)
Tin, M. K. T.; Thirupathi, N.; Yap, G. P. A.; Richeson, D. S. Dalton
Trans. 1999, 2947-2951. (m) Shen, H.; Chan, H.-S.; Xie, Z. Organo-
metallics 2006, 25, 5515-5517. (n) Shen, H.; Chan, H.-S.; Xie, Z.
Organometallics 2007, 26, 2694-2704. (o) Zhang, W.-X.; Nishiura, M.;
Hou, Z. Synlett 2006, 8, 1213-1216.
(3) (a) Hosmane, N. S.; Maguire, J. A. In ComprehensiVe Organometallic
Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford,
2007; Vol. 4, pp 175-264. (b) Grimes, R. N. In ComprehensiVe
Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson,
G., Eds.; Pergamon: New York, 1995; Vol. 1, pp 373-430. (c) Xie, Z.
Acc. Chem. Res. 2003, 36, 1-9. (d) Xie, Z. Coord. Chem. ReV. 2002,
231, 23-46. (e) Xie, Z. Coord. Chem. ReV. 2006, 250, 259-272.
(4) Detailed experimental procedures and complete characterization data for
all complexes are provided in the Supporting Information.
refluxing toluene solution of 3a. The formation of Me2NH was con-
firmed by GC/MS. These transformations are outlined in Scheme 2.
A mechanism for the C-N bond cleavage of a guanidinate unit
is proposed in Scheme 3. This process may be driven by heat and
can be viewed as a deinsertion of a carbodiimide from the
guanidinate ligand.9 This proposal is evident from the following
carbodiimide exchange experiments. Treatment of 3c with 8 equiv
of iPrNdCdNiPr in refluxing toluene afforded 6a in 18% isolated
yield. On the other hand, under the same reaction conditions,
reaction of 4a with 6 equiv of CyNdCdNCy generated 6c in 12%
isolated yield.
On the basis of the aforementioned experimental results, a
proposed mechanism for the formation of complexes 6 is illustrated
in Scheme 4. Reaction of 1 with carbodiimides or guanidines 2
yields 3 which is able to react reversibly with another equivalent
of 2 to generate 4. Heating of 3/3′ results in the cleavage of the
C-N bond and in situ generation of carbodiimide and amido,
leading to the formation of intermediate A. Interaction of A with
2 or of 3′ with carbodiimide produces B which gives 5 via an
insertion reaction. 1,5-Sigmatropic rearrangement7 over the indenyl
ring in 5 affords C, which undergoes an intramolecular proton-
transfer reaction to generate the final products 6.
(5) Such exchange reactions were known; see refs 2h and 2l.
(6) The Zr-C σ-bond should be more reactive than the Zr-N bond; see: (a)
Kloppenburg, L.; Petersen, J. L. Organometallics 1996, 15, 7-9. (b)
Andersen, R. A. Inorg. Chem. 1979, 18, 2928-2932. (c) Gately, D. A.;
Norton, J. R.; Goodson, P. A. J. Am. Chem. Soc. 1995, 117, 986-996.
(7) 1,5-Sigmatropic rearrangement in indene derivatives was reported. For
examples, see: (a) Stradiotto, M.; McGlinchey, M. J. Coord. Chem. ReV.
2001, 219-221, 311-378. (b) Christopher, J. N.; Jordan, R. F.; Peterson,
J. L., Jr.; Young, V. G. Organometallics 1997, 16, 3044-3050. (c) Dolbier,
W. R., Jr.; McCullagh, L.; Rolison, D.; Anapolle, K. E. J. Am. Chem.
Soc. 1975, 97, 934-935. (d) Stradiotto, M.; Hazendonk, P.; Bain, A. D.;
Brook, M. A.; McGlinchey, M. J. Organometallics 2000, 19, 590-601.
(8) (a) pKa of guanidines ) 13.6; see ref 1a. (b) pKa of indene ) 20.1; see:
Bordwell, F. G.; Drucker, G. E. J. Org. Chem. 1980, 45, 3325-3328.
(9) Reversible attack of dimethylamide co-ligands at the imine carbon atom
of Schiff base tin complexes was reported: Nimitsiriwat, N.; Marshall,
E. L.; Gibson, V. C.; Elsegood, M. R. J.; Dale, S. H. J. Am. Chem. Soc.
2004, 126, 13598-13599.
(10) For examples, see: (a) Chandra, G.; Jenkins, A. D.; Lappert, M. F.;
Srivastava, R. C. J. Chem. Soc. A 1970, 2550-2558. (b) Thomas, E. W.;
Nishizawa, E. E.; Zimmermann, D. C.; Williams, D. J. J. Med. Chem.
1989, 32, 228-236. (c) Montilla, F.; Pastor, A.; Galindo, A. J. Organomet.
Chem. 2004, 689, 993. (d) Ong, T.-G.; O’Brien, J. S.; Korobkov, I.;
Richeson, D. S. Organometallics 2006, 25, 4728-4730. (e) Montilla, F.;
del R´ıo, D.; Pastor, A.; Galindo, A. Organometallics 2006, 25, 4996-5002.
In conclusion, although it is well-established that insertion of
carbodiimides into amides is a very useful method for the
preparation of guanidines,2m-o,10 this work provides experimental
JA0754498
9
J. AM. CHEM. SOC. VOL. 129, NO. 43, 2007 12935