5968 Organometallics, Vol. 26, No. 24, 2007
Zhang et al.
Scheme 1
an aryloxo ligand of the type Cp′TiCl2(OAr) (Cp′ ) substituted
cyclopentadienyl; OAr ) aryloxo) exhibited notable catalytic
activities for olefin polymerization,18a,b and we demonstrated
later that a series of these complexes (containing aryloxo, amide,
ketimide ligands) displayed unique characteristics especially for
copolymerization of ethylene with R-olefin,18b,d,19,20 styrene,21
and norbornene.22a,b It was revealed that an efficient catalyst
for desired polymerization can be simply modified by replace-
ment of both the cyclopentadienyl fragment and anionic ancillary
ligands.8b More recently, we had shown that efficient copoly-
merizations of ethylene with cyclohexene (CHE),22c 2-methyl-
1-pentene (2M1P),23 and vinylcyclohexane24 had been achieved
by using these complex catalysts.
Recently, we (group of Qian and Huang)25 and Bochmann26
reported synthesis of half-titanocenes containing phenoxy-imine
ligands (e.g., CpTiCl2[O-2-tBu-6-(RNdCH)C6H3], R ) 2,4,6-
Me3C6H2, C6F5, C6H11,26 etc.) and their use as the catalyst
precursors for olefin polymerization. Since studies concerning
synthesis of various titanium/zirconium complexes containing
bis(phenoxy-imine) ligands for olefin polymerization were made
known by Fujita et al.,27,28 we prepared a series of half-
titanocenes containing substituted cyclopentadienyl and phe-
noxy-imine ligands and tested them as catalyst precursors for
homo- and copolymerization of ethylene with various co-
monomers.
Results and Discussion
1. Synthesis of Various (Cyclopentadienyl)(phenoxy-imi-
ne)titanium Complexes of the Type Cp′TiX2[O-2-R1-6-
(R2NdCH)C6H3] (X ) Cl, Me). A series of substituted
salicylaldimines (imino-phenols), 2-R1-6-(R2NdCH)C6H3OH
t
t
t
[R1, R2 ) Me, 2,6-iPr2C6H3; Bu, 2,6-iPr2C6H3; Me, Bu; Bu,
tBu], were prepared according to the reported procedures, by
reaction of alkyl-substituted salicylaldehyde with 2,6-diisopro-
pylaniline or tert-butylamine, respectively (Scheme 1).27a Vari-
ous half-titanocenes containing phenoxy-imine ligands of the
type Cp′TiCl2[O-2-R1-6-(R2NdCH)C6H3] [Cp′ ) Cp* (C5Me5)
and R1, R2 ) Me, 2,6-iPr2C6H3 (1); tBu, 2,6-iPr2C6H3 (2); Me,
(19) Nomura, K.; Komatsu, T.; Imanishi, Y. J. Mol. Catal. A 2000, 152,
249.
(20) (a) Nomura, K.; Oya, K.; Komatsu, T.; Imanishi, Y. Macromolecules
2000, 33, 3187. (b) Nomura, K.; Oya, K.; Imanishi, Y. J. Mol. Catal. A
2001, 174, 127.
(21) (a) Nomura, K.; Okumura, H.; Komatsu, T.; Naga, N. Macromol-
ecules 2002, 35, 5388. (b) Zhang, H.; Nomura, K. J. Am. Chem. Soc.
2005, 127, 9364. (c) Zhang, H.; Nomura, K. Macromolecules 2006, 39,
5266.
(22) (a) Nomura, K.; Tsubota, M.; Fujiki, M. Macromolecules 2003, 36,
3797. (b) Wang, W.; Tanaka, T.; Tsubota, M.; Fujiki, M.; Yamanaka, S.;
Nomura, K. AdV. Synth. Catal. 2005, 347, 433. (c) Wang, W.; Fujiki, M.;
Nomura, K. J. Am. Chem. Soc. 2005, 127, 4582.
(23) Nomura, K.; Itagaki, K.; Fujiki, M. Macromolecules 2005, 38,
2053.
(24) Nomura, K.; Itagaki, K. Macromolecules 2005, 38, 8121.
(25) (a) Huang, J.; Lian, B.; Qian, Y.; Zhou, W.; Chen, W.; Zheng, G.
Macromolecules 2002, 35, 4871. (b) Chen, Q.; Huang, J.; Yu, J. Inorg.
Chem. Commun. 2005, 8, 444.
(26) (a) Bott, R. K. J.; Hughes, D. L.; Schormann, M.; Bochmann, M.;
Lancaster, S. J. J. Organomet. Chem. 2003, 665, 135. (b) Bott, R. K. J.;
Schormann, M.; Hughes, D. L.; Lancaster, S. J.; Bochmann, M. Polyhedron
2006, 25, 387.
(27) (a) Fujita, T.; Tohi, Y.; Mitani, M.; Matsui, S.; Saito, J.; Nitabaru,
M.; Sugi, K.; Makio, H.; Tsutsui, T. Europe Patent, EP-0874005, 1998. (b)
Matsui, S.; Tohi, Y.; Mitani, M.; Saito, J.; Makio, H.; Tanaka, H.; Nitabaru,
M.; Nakano, T.; Fujita, T. Chem. Lett. 1999, 1065. (c) Matsui, S.; Mitani,
M.; Saito, J.; Tohi, Y.; Makio, H.; Tanaka, H.; Fujita, T. Chem. Lett.
1999, 1163. (d) Matsui, S.; Mitani, M.; Saito, J.; Matsukawa, N.;
Tanaka, H.; Nakano, T.; Fujita, T. Chem. Lett. 2000, 554. (e) Saito, J.;
Mitani, M.; Matsui, S.; Kashiwa, N.; Fujita, T. Macromol. Rapid Commun.
2000, 21, 1333. (f) Saito, J.; Mitani, M.; Matsui, S.; Kashiwa, N.; Fujita,
T. Macromol. Rapid Commun. 2000, 21, 1333. (g) Matsui, S.; Fujita, T.
Catal. Today 2001, 66, 63. (h) Matsukawa, N.; Matsui, S.; Mitani, M.;
Saito, J.; Tsuru, K.; Kashiwa, N.; Fujita, T. J. Mol. Catal. A 2001, 169, 99.
(i) Yoshida, Y.; Matsui, S.; Takagi, Y.; Mitani, M.; Nitabaru, M.; Nakano,
T.; Tanaka, H.; Fujita, T. Chem. Lett. 2000, 1270. (j) Saito, J.; Mitani, M.;
Mohri, J.; Ishii, S.; Yoshida, Y.; Matsugi, T.; Kojoh, S.; Nashiwa, N.;
Fujita, T. Chem. Lett. 2001, 576. (k) Matsui, S.; Mitani, M.; Saito, J.;
Tohi, Y.; Makio, H.; Matsukawa, N.; Takagi, Y.; Tsuru, K.; Nitabaru, M.;
Nakano, T.; Tanaka, H.; Kashiwa, N.; Fujita, T. J. Am. Chem. Soc. 2001,
123, 6847.
tBu (3); Bu, Bu (4); Cp′ ) 1,2,4-Me3C5H2 and R1, R2 ) Me,
t
t
2,6-iPr2C6H3 (5); Cp′ ) Cp and R1, R2 ) Me, 2,6-iPr2C6H3 (6);
t
Me, Bu (7)] were prepared in Et2O by reaction of Cp′TiCl3
with LiO-2-R1-6-(R2NdCH)C6H3, which were prepared in situ
by treating the corresponding phenol with 1.0 equiv of n-BuLi
in Et2O (Scheme 1). Analytically pure samples were collected
as red microcrystals in moderate yields (50.6-72.5%) from a
concentrated dichloromethane solution layered with n-hexane
at -30 °C. The resultant dichloro complexes (1-7) were
identified by 1H and 13C NMR spectra and elemental analyses,
and the structures (for 1-3, 5-7) were determined by X-ray
crystallography as described below (Figures 1 and 2).
The H and 13C NMR spectra for 1-7 were analogous to
1
those reported previously.25-27 For instance, a resonance
ascribed to the imino protons in 1 was observed at 8.54 ppm,
which is slightly downfield from that in the corresponding free
imino phenol (8.28 ppm); a resonance ascribed to the imino
carbon in 1 was observed at 156.9 ppm, whereas the resonance
in the free ligand was observed at 159.2 ppm.
ThedimethylanalogueCp*TiMe2[O-2-Me-6-{(2,6-iPr2C6H3)Nd
CH}C6H3] (8) was prepared in high yield (92%) from Cp*TiMe3
bytreatingwith1.0equivof2-Me-6-{(2,6-iPr2C6H3)NdCH}C6H3-
OH in n-hexane (Scheme 2). The complex 8 was also identified
by H and 13C NMR spectra and elemental analysis, and the
1
structure was determined by X-ray crystallography (Figure 3).
A resonance corresponding to protons for Ti-Me was observed
as one singlet at 0.73 ppm (in C6D6), although the ortho-
substituents in the phenoxy ligand in 8 were different (Me and
the substituted imino), and no significant changes in the
resonance in the 1H NMR spectra (in C6D5CD3) were observed
even at various temperatures (-60 to 60 °C); this was somewhat
different from that in, for example, CpTiMe2(O-2-Np-4,6-t-
Bu2C6H2) (Np ) 1-naphthyl),29 where two resonances ascribed
to Ti-Me were observed. These results suggest that the imino
nitrogen was not coordinated to Ti as described below.
(28) (a) Yoshida, Y.; Matsui, S.; Takagi, Y.; Mitani, M.; Nakano, T.;
Tanaka, H.; Kashiwa, N.; Fujita, T. Organometallics 2001, 20, 4793. (b)
Yoshida, Y.; Saito, J.; Mitani, M.; Takagi, Y.; Matsui, S.; Ishii, S.; Nakano,
T.; Kashiwa, N.; Fujita, T. Chem. Commun. 2002, 1298. (c) Yoshida, Y.;
Mohri, J.; Ishii, S.; Mitani, M.; Saito, J.; Matsui, S.; Makio, H.; Nakano,
T.; Tanaka, H.; Onda, M.; Yamamoto, Y.; Mizuno, A.; Fujita, T. J. Am.
Chem. Soc. 2004, 126, 12023.
(29) Thorn, M. G.; Vilardo, J. S.; Fanwick, P.E.; Rothwell, I. P. Chem.
Commun. 1998, 2427.