Communications
size, namely CH3 and CD3 (Scheme 3), was investigated. Also
Keywords: asymmetric synthesis · aza-Claisen rearrangement ·
imidates · imidazolines · palladacycles
.
in this case the product is formed with an ee value of 96%,
thus confirming the mechanistic hypothesis.[13]
[1] a) T. Ohmura, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 15164;
b) C. A. Kiener, C. Shu, C. Incarvito, J. F. Hartwig, J. Am. Chem.
Soc. 2003, 125, 14272; c) C. Shu, A. Leitner, J. F. Hartwig,
Angew. Chem. 2004, 116, 4797; Angew. Chem. Int. Ed. 2004, 43,
4797; d) O. V. Singh, H. Han, J. Am. Chem. Soc. 2007, 129, 774;
e) D. Polet, A. Alexakis, K. Tissot-Croset, C. Corminboeuf, K.
Ditrich, Chem. Eur. J. 2006, 12, 3596; f) C. Defieber, M. A.
Ariger, P. Moriel, E. M. Carreira, Angew. Chem. 2007, 119, 3200;
Angew. Chem. Int. Ed. 2007, 46, 3139.
Scheme 3. Highly enantioselective formation of CH3/CD3-substitituted
allylic amide 5n.
[2] a) Review about enantioselective aza-Claisen rearrangements:
T. K. Hollis, L. E. Overman, J. Organomet. Chem. 1999, 576, 290;
b) C. E. Anderson, L. E. Overman, J. Am. Chem. Soc. 2003, 125,
12412; c) L. E. Overman, C. E. Owen, M. M. Pavan, C. J.
Richards, Org. Lett. 2003, 5, 1809; d) S. F. Kirsch, L. E. Overman,
M. P. Watson, J. Org. Chem. 2004, 69, 8101; e) R. S. Prasad, C. E.
Anderson, C. J. Richards, L. E. Overman, Organometallics 2005,
24, 77; f) C. E. Anderson, Y. Donde, C. J. Douglas, L. E.
Overman, J. Org. Chem. 2005, 70, 648; g) R. Peters, Z.-q. Xin,
D. F. Fischer, W. B. Schweizer, Organometallics 2006, 25, 2917;
h) M. E. Weiss, D. F. Fischer, Z.-q. Xin, S. Jautze, W. B.
Schweizer, R. Peters, Angew. Chem. 2006, 118, 5823; Angew.
Chem. Int. Ed. 2006, 45, 5694; i) S. Jautze, P. Seiler, R. Peters,
Angew. Chem. 2007, 119, 1282; Angew. Chem. Int. Ed. 2007, 46,
1260.
To showcase the utility of the rearrangement products,
allylic amide 5a was employed to synthesize Fmoc-protected
a,a-disubstituted a-amino acid 12 and b,b-disubstituted b-
amino acid 13 (Scheme 4) by oxidative cleavage of the vinyl
[3] Selected examples: a) B. J. Burreson, P. J. Scheuer, J. Chem. Soc.
Chem. Commun. 1974, 1035; b) B. J. Burreson, C. Christo-
phersen, P. J. Scheuer, Tetrahedron 1975, 31, 2015; c) T. Yama-
shita, M. Iijima, H. Nakamura, K. Isshiki, H. Naganawa, S.
Hattori, M. Hamada, M. Ishizuka, T. Takeuchi, J. Antibiot. 1991,
54, 557; d) J. Kobayashi, F. Kanda, M. Ishibashi, H. Shigemori, J.
Org. Chem. 1991, 56, 4574; selected books and reviews: e) S.
Yamamura in The Alkaloids, Vol. 29 (Ed.: A. Brossi), Academic
Press, New York, 1986; f) M. Hesse in The Alkaloids, Natureꢀs
Curse or Blessing?, Wiley-VCH, Weinheim, 2002; g) G. A.
Cordell in The Alkaloids: Chemistry and Biology, Vol. 60,
Elsevier, Amsterdam, 2003; h) J. Kobayashi, H. Morita, Alka-
loids 2003, 60, 165; i) D. J. Ramon, M. Yus, Curr. Org. Chem.
2004, 8, 149; j) I. Moldvai, E. Temesvari-Major, M. Incze, G.
Doernyei, E. Szentirmay, C. Szantay, Helv. Chim. Acta 2005, 88,
1344; k) Y. Ohfune, T. Shinada, Eur. J. Org. Chem. 2005, 5127;
l) T. Reynolds, Phytochemistry 2005, 66, 1399.
[4] a) Recent reviews about the stereoselective formation of a,a-
disubstituted a-amino acids: H. Vogt, S. Brꢀse, Org. Biomol.
Chem. 2007, 5, 406; b) C. Cativiela, M. D. Dꢁaz-de-Villegas,
Tetrahedron: Asymmetry 2007, 18, 569; c) review about the
catalytic asymmetric synthesis of a-branched chiral amines: S.
Brꢀse, T. Baumann, S. Dahmen, H. Vogt, Chem. Commun. 2007,
1881; d) review about the catalytic asymmetric synthesis of
quaternary carbon centers by nucleophilic addition on ketones
and ketimines: O. Riant, J. Hannedouche, Org. Biomol. Chem.
2007, 5, 873; e) for the catalytic asymmetric formation of N-
substituted quaternary stereocenters, see, for example: X. Liu,
H. Li, L. Deng, Org. Lett. 2005, 7, 167, and references therein.
[5] a) A. Aubry, D. Bayeul, G. Precigoux, M. Pantano, F. Formaggio,
M. Crisma, C. Toniolo, W. H. J. Boesten, H. E. Schoemaker, J.
Kamphuis, J. Chem. Soc. Perkin Trans. 2 1994, 525; b) T. S.
Yokum, T. J. Gauthier, R. P. Hammer, M. L. McLaughlin, J. Am.
Chem. Soc. 1997, 119, 1167; c) B. Jaun, M. Tanaka, P. Seiler,
F. N. M. Kuhnle, C. Braun, D. Seebach, Liebigs Ann./Recl. 1997,
1697.
Scheme 4. Use ofallylic amide 5a for the preparation of a,a-disubsti-
tuted a-amino acid 12 and b,b-disubstituted b-amino acid 13.
system and hydroboration, respectively. The absolute config-
uration of a-amino acid 12 was determined after removal of
the Fmoc protecting group by comparison of the specific
optical rotation with reported data[14] (see the Supporting
Information).[15]
In summary, we have developed a highly enantioselective
and functional-group-compatible catalytic method to form
allylic amines with quaternary N-substituted stereocenters.
We have shown that the enantioselectivity-determining step is
the enantioface-selective olefin coordination to the PdII
center, allowing high enantioselectivities also for 3,3-disub-
stituted substrates in which the two substituents at the 3-
position can even have an identical size.
Experimental Section
See the Supporting Information.
[6] M. C. Khosla, K. Stachowiak, R. R. Smeby, F. M. Bumpus, F.
Piriou, K. Lintner, S. Fermandjian, Proc. Natl. Acad. Sci. USA
1981, 78, 757.
Received: May 11, 2007
Published online: August 23, 2007
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 7704 –7707