Degradation of AO Dye by the Fenton Oxidation Process
catalysis.
J. Chin. Chem. Soc., Vol. 56, No. 6, 2009 1155
4. Kansal, S. K.; Singh, M.; Sud, D. J. Hazard. Mater. 2007,
141, 581.
5. Guo, J.; Al-Dahhan, M. Ind. Eng. Chem. Res. 2003, 42,
2450.
CONCLUSIONS
The Fenton process appears to have the capacity to
completely decolourize and partially mineralize the acri-
dine orange dye in aqueous solution in a short reaction
time. A direct influence of initial pH on the decolorization
of AO could be observed, and the best efficiency was ob-
tained at pH of 3.0. At a constant AO concentration (0.2
mM), decolorization efficiency increased with increasing
H2O2 and Fe2+ concentrations up to a certain level above
which decolorization efficiency decreased due to the scav-
enging effects of H2O2 on hydroxyl radicals. A suitable op-
erating condition for the Fenton oxidation of AO was se-
lected as: [H2O2] = 2.0 mM, [Fe2+] = 0.4 mM and pH = 3.0.
In the given conditions, more than 95.8% of decolorization
efficiency was achieved within 10 min of reaction. How-
ever, low TOC removal or mineralization yield and high
AO removal indicated the formation of intermediate prod-
ucts. The N-de-methylation degradation of the AO dye
takes place in a stepwise manner with the various N-de-
methylated intermediate AO species. The methyl groups
are removed one by one as confirmed by the gradual wave-
length shifts of the maximum-peaks toward the blue re-
gion. The process continues until formation of the com-
pletely N-de-methylated dye.
6. Daneshvar, N.; Salari, D.; Khataee, A. R. J. Photochem.
Photobiol. A: Chem. 2004, 162, 317.
7. Goi, A.; Veressinina, Y.; Trapido, M. Chem. Eng. J. 2008,
143, 1.
8. Yoon, J.; Lee, Y.; Kim, S. Water Sci. Technol. 2001, 44, 15.
9. Neyens, E.; Baeyens, J. J. Hazard. Mater. 2003, 98, 33.
10. Rizzo, L.; Lofrano, G.; Grassi, M.; Belgiorno, V. Sep. Purif.
Technol. 2008, 63, 648.
11. Papic, S.; Vujevic, D.; Koprivanac, N.; Sinko, D. J. Hazard.
Mater. 2009, 164, 1137.
12. Szpyrkowicz, L.; Juzzolino, C.; Kaul, S. N. Water Res.
2001, 35, 2129.
13. Sun, S. P.; Li, C. J.; Sun, J. H.; Shi, S. H.; Fan, M. H.; Zhou,
Q. J. Hazard. Mater. 2009, 161, 1052.
14. Kwon, B. G.; Lee, D. S.; Kang, N.; Yoon, J. Water Res. 1999,
33, 2110.
15. Deng, Y.; Englehardt, J. D. Water Res. 2006, 40, 3683.
16. Feng, J.; Hu, X.; Yue, P. L.; Zhu, H. Y.; Lu, G. Q. Ind. Eng.
Chem. Res. 2003, 42, 2058.
17. Hameed, B. H.; Lee, T. W. J. Hazard. Mater. 2009, 164, 468.
18. Neamtu, M.; Zaharia, C.; Catrinescu, C.; Yediler, A.;
Macoveanu, M.; Kettrup, A. Appl. Catal. B: Environ. 2004,
48, 287.
19. Xu, X. R.; Zhao, Z. Y.; Li, X. Y.; Gu, J. D. Chemosphere
2004, 55, 73.
20. Swaminathan, K.; Sandhya, S.; Sophia, A. C.; Pachhade, K.;
Subrahmanyam, Y. V. Chemosphere 2003, 50, 619.
21. Wang, S. Dyes Pigm. 2008, 76, 714.
ACKNOWLEDGMENT
22. Siedlecka, E. M.; Wieckowska, A.; Stepnowski, P. J. Haz-
ard. Mater. 2007, 147, 497.
This work was supported by NSC 97-2113-M-438-
001 of the National Science Council of the Republic of
China.
23. Ashraf, S. S.; Rauf, M. A.; Alhadrami, S. Dyes Pigm. 2006,
69, 74.
24. Chan, K. H.; Chu, W. J. Hazard. Mater. 2005, 118, 227.
25. Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L. J. Phy. Chem.
Ref. Data 1985, 14, 1041.
Received June 25, 2009.
REFERENCES
26. Frimer, A. A.; Simiuc, M. G. et al. Oxygen Radicals in
Biology and Medicine; Plenum Press: New York, 1988; pp
29-38.
1. Xie, Y.; Chen, F.; He, J.; Zhao, J.; Wang, H. J. Photochem.
Photobiol. A: Chem. 2000, 136, 235.
2. Brinker, C. J.; Cornils, B.; Bonet, M. Ullmann’s Encyclope-
dia of Industrial Chemistry, Part A27; Triarylmethane and
Diarylmethane Dyes; 6th ed.; Wiley-VCH: New York, 2001.
3. Faisal, M.; Tariq, M. A.; Muneer, M. Dyes Pigm. 2007, 72,
233.
27. Lee, J.; Choi, W. Environ. Sci. Technol. 2004, 38, 4026.
28. Russell, G. A. J. Am. Chem. Soc. 1957, 79, 3871.
29. Lu, C. S.; Mai, F. D.; Wu, C. W.; Wu, R. J.; Chen, C. C. Dyes
Pigm. 2008, 76, 706.