C O M M U N I C A T I O N S
bond with retention of configuration13 would form (R,Z)-3a. In the
major pathway of the mismatched reaction manifold, outer-sphere
cyclization of gold-allene complex (Si,S)-I followed by deproto-
nation/protonolysis would form (R,E)-3a. Analogous outer-sphere
pathways have been proposed on the basis of stereochemical
analysis for the gold(I)-catalyzed addition of nucleophiles to C-C
multiple bonds.14 Although the mechanism of racemization remains
unclear,5 the formation of (R,Z)-3a and (R,E)-3a in discrete reaction
manifolds argues strongly against racemization of 2a in the C-N
bond forming manifold.
In summary, we have presented the first examples of the dynamic
kinetic enantioselective hydroamination (DKEH) of axially chiral
allenes, and we provide experimental evidence for the dynamic
nature and mechanism of these transformations.
Acknowledgment. Acknowledgment is made to the NSF (CHE-
0555425), NIH (GM-080422), and Johnson&Johnson for support
of this research. We thank Dr. David Pham for determining the
X-ray crystal structure of (R,S)-S13.
Supporting Information Available: Experimental procedures,
spectroscopic data, and scans of NMR spectra and HPLC traces (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974. (b)
Pellissier, H. Tetrahedron 2003, 59, 8291. (c) Pamies, O.; Ba¨ckvall, J.-E.
Chem. ReV. 2003, 103, 3247.
(2) (a) Hayashi, T.; Konishi, M.; Fukushima, M.; Mise, T.; Kagotani, M.;
Tajika, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 180. (b) Hayashi,
T.; Yamamoto, A.; Hojo, M.; Ito, Y. J. Chem. Soc., Chem. Commun. 1989,
495. (c) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 3543.
(d) Trost, B. M.; Patterson, D. E.; Hembre, E. J. J. Am. Chem. Soc. 1999,
121, 10834. (e) Cook, G. R.; Shanker, P. S.; Pararajasingham, K. Angew.
Chem., Int. Ed. 1999, 38, 110. (f) Braun, M.; Kotter, W. Angew. Chem.,
Int. Ed. 2004, 43, 514. (g) Xu, K.; Lalic, G.; Sheehan, S. M.; Shair, M.
D. Angew. Chem., Int. Ed. 2005, 44, 2259.
(3) (a) Ma, S. Chem. ReV. 2005, 105, 2829. (b) Modern Allene Chemistry;
Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany,
2004. (c) Bates, R. W.; Satcharoen, V. Chem. Soc. ReV. 2002, 31, 12.
(4) (a) Horvath, A.; Ba¨ckvall, J.-E. Chem. Commun. 2004, 964. (b) Ogoshi,
S.; Nishida, T.; Shinagawa, T.; Kurosawa, H. J. Am. Chem. Soc. 2001,
123, 7164. (c) Claesson, A.; Olsson, L.-I. J. Chem. Soc., Chem. Commun.
1979, 524.
Figure 1. Plots of concentration versus time (left-hand column, minor
enantiomers omitted for clarity) and Z/E ratio versus conversion (right-
hand column) for the cyclization of rac-2a catalyzed by (S)-1/AgClO4 (top
plots), a ∼3:1 mixture of (R)-2a and (S)-2a catalyzed by (S)-1/AgClO4
(middle plots), and a ∼3:1 mixture of (R)-2a and (S)-2a catalyzed by (R)-
1/AgClO4 (bottom plots) in m-xylene at 23 °C. Catalyst loading: 1 ) 2.5
mol %; AgClO4 ) 5 mol %.
Scheme 1
(5) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.
(6) (a) Trost, B. M.; Fandrick, D. R.; Dinh, D. C. J. Am. Chem. Soc. 2005,
127, 14186. (b) Imada, Y.; Ueno, K.; Kutsuwa, K.; Murahashi, S.-I. Chem.
Lett. 2002, 140. (c) Mikami, K.; Yoshida, A. Angew. Chem., Int. Ed. Engl.
1997, 36, 858.
(7) For the kinetic resolution of allenes, see: (a) Sweeney, Z. K.; Salsman,
J. L.; Andersen, R. A.; Bergman, R. G. Angew. Chem., Int. Ed. 2000, 39,
2339. (b) Noguchi, Y.; Takiyama, H.; Katsuki, T. Synlett 1998, 543.
(8) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. Org. Lett. 2007, 9, 2887.
(9) See also: LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am.
Chem. Soc. 2007, 129, 2452.
(10) Control experiments ruled out both the isomerization of (E)-3a and (Z)-
3a under reaction conditions and the contribution of AgClO4- or HClO4-
catalyzed processes to the racemization or enantioselective hydroamination
of 2a. Mixtures of HOTf and P-P, AgOTf and P-P, or Pt(P-P)Cl2 and
AgOTf [P-P ) (S)-3,5-t-Bu-4-MeO-MeOBIPHEP] were also ineffective
catalyst systems for the DKEH of 2a (see Supporting Information).
(11) See Supporting Information for the assignment of absolute configuration
of (R,Z)-3a and (R,E)-3a and for the synthesis of enantiomerically enriched
(R)-2a.
(12) (a) Kitamura, M.; Tokunaga, M.; Noyori, R. Tetrahedron 1993, 49, 1853.
(b) Andraos, J. J. Phys. Chem. A 2003, 107, 2374. (c) Kitamura, M.;
Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, 144.
(13) Johnson, A.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans. 1978, 980.
(14) (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 4526. (b) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc.
2006, 128, 1798. (c) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.;
Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066. (d) Hashmi, A.
S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391. (e)
Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7, 5409. (f)
Zhang, Z.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283.
matched enantiomer was initially present in excess [(R)-2a/(S)-1],
the (R,Z)-3a/(R,E)-3a ratio decreased rapidly from 4.5 to 3.9 early
in the reaction (0-20% conversion), whereas in the reaction in
which the mismatched enantiomer was initially present in excess
[(R)-2a/(R)-1], the (S,Z)-3a/(S,E)-3a ratio increased from 3.1 to 3.6
early in the reaction (0-20% conversion) (Figure 1). In both cases,
the product ratio mirrored the rapidly changing (R)-2a/(S)-2a ratio
early in the reaction.
The experiments described above support the mechanism for the
DKEH of rac-2a catalyzed by (S)-1/AgClO4 depicted in Scheme
1. In the major pathway of the matched reaction manifold,
complexation of gold to the Si face of the internal CdC bond of
(R)-2a followed by outer-sphere cyclization of gold-allene complex
(Si,R)-I would form alkenyl gold σ-complex (R,E)-II (Scheme 1).
Deprotonation of (R,E)-II followed by protonolysis of the Au-C
JA0760731
9
J. AM. CHEM. SOC. VOL. 129, NO. 46, 2007 14149