1R,25-Dihydroxy-19-norVitamin D3 Analogue
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 24 6163
(2) Norman, A. W.; Bouillon, R.; Thomasset, M., Eds., Vitamin D, a
pluripotent steroid hormone: Structural studies, molecular endo-
crinology and clinical applications; Walter de Gruyter: Berlin, 1994.
(3) (a) Chawla, A.; Repa, J. J.; Evans, R. M.; Mangelsdorf, D. J. Nuclear
receptors and lipid physiology: opening the X-files. Science 2001,
294, 1866-1870. (b) Malloy, P. J.; Pike, J. W.; Feldman, D. The
vitamin D receptor and the syndrome of hereditary 1,25-dihydrox-
yvitamin D-resistant rickets. Endocr. ReV. 1999, 20, 156-188.
(4) Evans, R. M. The steroid and thyroid hormone receptor superfamily.
Science 1988, 240, 889-895.
(b) Yoshida, A.; Ono, K.; Suhara, Y.; Saito, M.; Takayama, H.;
Kittaka, A. Efficient and convergent coupling route for the short-
step synthesis of enantiopure 2R- and 2â-alkylated 1R,25-dihydroxy-
19-norvitamin D3 analogues. Synlett 2003, 8, 1175-1179.
(23) Sicinski, R. R.; DeLuca, H. F. Synthesis and biological activity of
22-iodo- and (E)-20(22)-dehydro analogues of 1R,25-dihydroxyvi-
tamin D3. Bioorg. Med. Chem. 1999, 7, 2877-2889.
(24) Fall, Y.; Fernandez, C.; Gonzales, V.; Mourino, A. A key intermediate
for the convenient synthesis of series of vitamin D3 analogues with
modified side chains. Tetrahedron Lett. 2001, 42, 7815-7817.
(25) (a) Sicinski, R. R.; DeLuca, H. F. Ruthenium tetroxide oxidation of
Grundmann’s ketone derived from vitamin D3. Bioorg. Med. Chem.
Lett. 1995, 5, 159-162. (b) Kiegiel, J.; Wovkulich, P. M.; Uskokovic,
M. R. Chemical conversion of vitamin D3 to its 1,25-dihydroxyme-
tabolite. Tetrahedron Lett. 1991, 32, 6057-6060.
(26) (a) Hatakeyama, S.; Sugawara, K.; Numata, H.; Takano, S. A novel
convergent synthesis of (+)-1R,25-dihydroxyvitamin D3 using a
chromium(II)-mediated coupling reaction. J. Org. Chem. 1991, 56,
461-463. (b) Grigorieva, N. Ya.; Yudina, O. N.; Moiseenkov, A.
M. Glutaraldehyde derivatives as building blocks for stereoselective
(Z)-C5 elongation of a regular isoprenoid chain. Synthesis 1989, 8,
591-595. (c) Corey, E. J.; Enders, D.; Bock, M. G. A simple and
highly effective route to R,â-unsaturated aldehydes. Tetrahedron Lett.
1976, 7-10.
(5) Feldman, D.; Glorieux, F. H.; Pike, J. W. Vitamin D; Academic
Press: New York, 1997.
(6) DeLuca, H. F.; Paaren, H. E.; Schnoes, H. K. Vitamin D and calcium
metabolism. Top. Curr. Chem. 1979, 83, 1-65.
(7) Bouillon, R.; Okamura, W. H.; Norman, A. W. Structure-function
relationship in the vitamin D endocrine system. Endocr. ReV. 1995,
16, 200-257.
(8) Rochel, N.; Wurtz, J. M.; Mitschler, A.; Klaholz, B.; Moras, D. The
crystal structure of the nuclear receptor for vitamin D bound to its
natural ligand. Mol. Cell 2000, 5, 173-179.
(9) Vanhooke, J. L.; Benning, M. M.; Bauer, C. B.; Pike, J. W.; DeLuca,
H. F. Molecular structure of the rat vitamin D receptor ligand binding
domain complexed with 2-carbon-substituted vitamin D3 hormone
analogues and a LXLL-containing coactivator peptide. Biochemistry
2004, 43, 4101-4110.
(27) Sicinski, R. R.; Rotkiewicz, P.; Kolinski, A.; Sicinska, W.; Prahl, J.
M.; Smith, C. M.; DeLuca, H. F. 2-Ethyl and 2-ethylidene analogues
of 1R,25-dihydroxy-19-norvitamin D3: Synthesis, conformational
analysis, biological activities, and docking to the modeled rVDR
ligand binding domain. J. Med. Chem. 2002, 45, 3366-3380.
(28) (a) Magyar, K.; Lengyel, J.; Bolehovszky, A.; Gre´zal, G.; Klebovich,
I. Studies of the side chain cleavage of deramciclane in rats with
radiolabelled compounds. Eur. J. Pharm. Sci. 2002, 15, 217-223.
(b) Burger, A. G.; Engler, D.; Buergi, U.; Weissel, M.; Steiger, G.;
Ingbar, S. H.; Rosin, R. E.; Babior, B. M. Ether link cleavage is the
major pathway of iodothyronine metabolism in the phagocytosing
human leukocyte and also occurs in vivo in the rat. J. Clin. InVest.
1983, 71, 935-949.
(10) Ciesielski, F.; Rochel, N.; Moras, N. Adaptability of the vitamin D
receptor to the synthetic ligand Gemini: remodelling the LBP with
one side chain rotation. J. Steroid Biochem. Mol. Biol. 2007, 103,
235-242.
(11) Tocchini-Valentini, G.; Rochel, N.; Wurtz, J.-M.; Mitshler, A.; Moras,
D. Crystal structures of the vitamin D receptor complexed to
superagonist 20-epi ligands. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
5491-5496.
(12) Tocchini-Valentini, G.; Rochel, N.; Wurtz, J. M.; Moras, D. Crystal
structures of the vitamin D nuclear receptor liganded with the vitamin
D side chain analogues calcipotriol and seocalcitol, receptor agonists
of clinical importance. Insights into a structural basis for the switching
of calcipotriol to a receptor antagonist by further side chain
modification. J. Med. Chem. 2004, 47, 1956-1961.
(13) Elen, G.; Verlinden, L.; Rochel, N.; Claessens, F.; De Clercq, P.;
Vandevalle, M.; Tocchini-Valentini, G.; Moras, D.; Bouillon, R.;
Verstuyf, A. Superagonistic action of 14-epi-analogs of 1,25-
dihydroxyvitamin D explained by vitamin D receptor-coactivator
interaction. Mol. Pharmacol. 2005, 67, 1566-1573.
(14) Rochel, N.; Hourai, S.; Perez-Garcia, X.; Rumbo, A.; Mourino, A.;
Moras, D. Crystal structure of vitamin D nuclear receptor ligand
binding domain in complex with locked side chain analog of calcitriol.
Arch. Biochem. Biophys. 2007, 460, 172-176.
(15) Hourai, S.; Fuishima, T.; Kittaka, A.; Suhara, Y.; Takayama, H.;
Rochel, N.; Moras, D. Probing a water channel near the A-ring of
receptor-bound 1R,25-dihydroxyvitamin D3 with selected 2R-
substituted analogues. J. Med. Chem. 2006, 49, 5199-5205.
(16) Vanhooke, J. L.; Tadi, B. P.; Benning, M. M.; Plum, L. A.; Deluca,
H. F. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvi-
tamin D3 with conformationally restricted side chains. Arch. Biochem.
Biophys. 2007, 460, 161-165.
(17) Glebocka, A.; Sicinski, R. R.; Plum, L. A.; Clagett-Dame, M.;
DeLuca, H. F. New 2-alkylidene 1R,25-dihydroxy-19-norvitamin D3
analogues of high intestinal activity: synthesis and biological
evaluation of 2-(3′-alkoxypropylidene) and 2-(3′-hydroxypropylidene)
derivatives. J. Med. Chem. 2006, 49, 2909-2920.
(18) Glebocka, A.; Sicinski, R. R.; DeLuca, H. F. New derivative of 1R,-
25-dihydroxy-19-norvitamin D3 with 3′-alkoxypropylidene moiety
at C-2: Synthesis, biological activity and conformational analysis.
J. Steroid Biochem. Mol. Biol. 2004, 89-90, 25-30.
(19) Part of this work was previously published in a preliminary form:
Sicinski, R. R.; Glebocka, A.; Plum, L. A., DeLuca, H. F. An analog
of 1R,25-dihydroxy-19-norvitamin D3 with the 1R-hydroxy group
fixed in the axial position lacks biological activity in Vitro. J. Steroid
Biochem. Mol. Biol. 2007, 103, 293-297.
(20) Corey, E. J.; Feiner, N. F. Computer-assisted synthetic analysis. A
rapid computer method for the semiquantitative assignment of
conformation of six-membered ring systems. 1. Derivation of a
preliminary conformational description of the six-membered ring. J.
Org. Chem. 1980, 45, 757-764.
(21) Bellingham, R., Jarowicki, K., Kocienski, P., Martin, V. Synthetic
approaches to rapamycin: synthesis of a C10-C26 fragment via a
one-pot Julia olefination reaction. Synthesis 1996, 285-296.
(22) (a) Ono, K.; Yoshida, A.; Saito, M.; Fujishima, T.; Honzawa, S.;
Suhara, Y.; Kishimoto, S.; Sugiura, T.; Waku, K.; Takayama, H.;
Kittaka, A. Efficient synthesis of 2-modified 1R,25-dihydroxy-19-
norvitamin D3 with Julia olefination: high potency in induction of
differentiation on HL-60 cells. J. Org. Chem. 2003, 68, 7407-7415.
(29) Some selected papers: (a) Ishida, H.; Shimizu, M.; Yamamoto, K.;
Iwasaki, Y.; Yamada, S. Syntheses of 1-alkyl-1,25-dihydroxyvitamin
D3. J. Org. Chem. 1995, 60, 1828-1833. (b) Eguchi, T.; Ikekawa,
N. Conformational analysis of 1R,25-dihydroxyvitamin D3 by nuclear
magnetic resonance. Bioorg. Chem. 1990, 18, 19-29. (b) Helmer,
1
B.; Schnoes, H. K.; DeLuca, H. F. H nuclear magnetic resonance
studies of the conformations of vitamin D compounds in various
solvents. Arch. Biochem. Biophys. 1985, 241, 608-615. (c) Berman,
E.; Friedman, N.; Mazur, Y.; Sheves, M. Conformational equilibria
1
in vitamin D. Synthesis and H and 13C dynamic nuclear magnetic
resonance study of 4,4-dimethylvitamin D3, 4,4-dimethyl-1R-hy-
droxyvitamin D3, and 4,4-dimethyl-1R-hydroxyepivitamin D3. J. Am.
Chem. Soc. 1978, 100, 5626-5634. (d) Berman, E.; Luz, Z.; Mazur,
Y.; Sheves, M. Conformational analysis of vitamin D and analogues.
1
13C and H nuclear magnetic resonance study. J. Org. Chem. 1977,
42, 3325-3330. (e) Wing, R. M.; Okamura, W. H.; Rego, A.; Pirio,
M. R.; Norman, A. W. Studies on vitamin D and its analogues. VII.
Solution conformations of vitamin D3 and 1R,25-dihydroxyvitamin
D3 by high-resolution proton magnetic resonance spectroscopy. J.
Am. Chem. Soc. 1975, 97, 4980-4985. (f) La Mar, G. N.; Budd, D.
L. Elucidation of the solution conformation of the A ring in vitamin
D using proton coupling constants and a shift reagent. J. Am. Chem.
Soc. 1974, 96, 7317-7324.
(30) (a) Norman, A. W.; Bishop, J. E.; Collins, E. D.; Seo, E.-G.; Satchell,
D. P.; Dormanen, M. C.; Zanello, S. B.; Farach-Carson, M. C.;
Bouillon, R.; Okamura, W. H. Differing shapes of 1R,25-dihydrox-
yvitamin D3 function as ligands for the D-binding protein, nuclear
receptor and membrane receptor: A status report. J. Steroid Biochem.
Mol. Biol. 1996, 56, 13-22. (b) Okamura, W. H.; Midland, M. M.;
Hammond, M. W.; Abd.Rahman, N.; Dormanen, M. C.; Nemere, I.;
Norman, A. W. Chemistry and conformation of vitamin D molecules.
J. Steroid Biochem. Mol. Biol. 1995, 53, 603-613.
(31) Okamura, W. H.; Norman, A. W.; Wing, R. M. Vitamin D:
Concerning the relationship between molecular topology and biologi-
cal function. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 4194-4197.
(32) Sicinski, R. R.; DeLuca, H. F. Synthesis, conformational analysis,
and biological activity of the 1R,25-dihydroxy-10,19-dihydrovitamin
D3 isomers. Bioorg. Chem. 1994, 22, 150-171.
(33) Konno, K.; Maki, S.; Fujishima, T.; Liu, Z.; Miura, D.; Chokki, M.;
Takayama, H. A novel and practical route to A-ring enyne synthon
for 1R,25-dihydroxyvitamin D3 analogues: Synthesis of A-ring
diastereomers of 1R,25-dihydroxyvitamin D3 and 2-methyl-1R,25-
dihydroxyvitamin D3. Bioorg. Med. Chem. Lett. 1998, 8, 151-156.