conversions and biaryl yields were again obtained, establishing
that turnover numbers of !1000 can be realized.
to O. D.), and Johnson Matthey PMC (palladium loan) for
support.
Ligand 1b also effected Suzuki couplings of chlorobenzene,
but not as rapidly as P(t-Bu)3 (conversions, 100 °C: 40%/168 h
vs. 83%/96 h). Since K3PO4 is only moderately less basic than
the t-BuOK used to deprotonate the [Re(CH2)nPR2H]+X2
ligand precursors [DpKa(H2O) ca. 6],17 we wondered whether
the latter was needed at all. Accordingly, when a toluene
solution of 3b+TfO2 was treated with K3PO4 (2.0 equiv) at 100
°C, the characteristic orange-red color of 1b was generated.
Entry 2 of Table 1 was repeated with this sample. After 0.5 h,
the conversion and yield were 100 and 99%. An identical
reaction was conducted, but with all components mixed
simultaneously. The rate and yield data were essentially
identical.
The above data clearly establish the viability of transition-
metal-containing monodentate phosphorus donor ligands such
as 1 and 2 for palladium-catalyzed Suzuki reactions. The most
bulky and electron-rich ligand (1b) often comes close to the
activity of the corresponding organophosphine. Although the
other ligands are less effective, we consider these to be highly
promising lead results, amenable to further optimization and
extendable to other metal fragments as well as related carbon–
carbon bond forming reactions. Furthermore, 1 and 2 are easily
obtained in enantiomerically pure form.6,11 Hence, applications
to enantioselective catalysis can be anticipated.18 The utiliza-
tion of 1 and 2 in additional types of transition-metal-catalyzed
reactions will be reported in the near future.
Notes and references
1 Metal-Catalyzed Cross-Coupling Reactions, F. Diederich and P. J.
Stang, ed., Wiley-VCH, Weinheim, Germany, 1998.
2 A. Suzuki, ch. 2 in ref. 1; A. Suzuki, J. Organomet. Chem., 1999, 576,
147; H. Gröger, J. Prakt. Chem., 2000, 342, 334.
3 This literature is extensive. See the following representative papers, and
refs. cited therein: (a) J. P. Wolfe, R. A. Singer, B. H. Yang and S. L.
Buchwald, J. Am. Chem. Soc., 1999, 121, 9550; (b) A. F. Littke, C. Dai
and G. C. Fu, J. Am. Chem. Soc., 2000, 122, 4020; (c) A. Zapf, A.
Ehrentraut and M. Beller, Angew. Chem., Int. Ed., 2000, 39, 4153; (d) G.
Y. Li, Angew. Chem., Int. Ed., 2001, 40, 1513; (e) M. L. Clarke, D. J.
Cole-Hamilton and J. D. Woolins, J. Chem. Soc., Dalton Trans., 2001,
2721; (f) S. Lee, N. A. Beare and J. F. Hartwig, J. Am. Chem. Soc., 2001,
123, 8410.
4 For an essay on the ‘ideal catalyst’ (an unattainable limit), see: J. A.
Gladysz, Pure Appl. Chem., 2001, 73, 1319.
5 Approaches to high-activity Suzuki catalysts besides those in refs. 3a–f,
see: (a) C. Zhang, J. Huang, M. L. Trudell and S. P. Nolan, J. Org.
Chem., 1999, 64, 3804; (b) X. Bei, H. W. Turner, W. H. Weinberg, A.
S. Guram and J. L. Petersen, J. Org. Chem., 1999, 64, 6797; (c) H.
Weissman and D. Milstein, Chem. Commun., 1999, 1901; (d) V. P. W.
Böhm, C. W. K. Gstöttmayr, T. Weskamp and W. A. Herrmann, J.
Organomet. Chem., 2000, 595, 186; (e) A. Fürstner and A. Leitner,
Synlett, 2001, 290; (f) R. B. Bedford and C. S. J. Cazin, Chem.
Commun., 2001, 1540; (g) M. Feuerstein, H. Doucet and M. Santelli,
Tetrahedron Lett., 2001, 42, 5659; (h) S.-Y. Liu, M. J. Choi and G. C.
Fu, Chem. Commun., 2001, 2408; (i) L. Botella and C. Nájera, Angew.
Chem., Int. Ed., 2002, 41, 179; (j) C. Rocaboy and J. A. Gladysz,
Tetrahedron, 2002, 58, in press.
We thank the Deutsche Forschungsgemeinschaft
(GL 300/4-1), the von Humboldt Foundation (fellowship
6 W. E. Buhro, B. D. Zwick, S. Georgiou, J. P. Hutchinson and J. A.
Gladysz, J. Am. Chem. Soc., 1988, 110, 2427.
7 See also: B. D. Zwick, M. A. Dewey, D. A. Knight, W. E. Buhro, A. M.
Arif and J. A. Gladysz, Organometallics, 1992, 11, 2673.
8 M. A. Dewey, D. A. Knight, A. M. Arif and J. A. Gladysz, Chem. Ber.,
1992, 125, 815.
9 F. B. McCormick, W. B. Gleason, X. Zhao, P. C. Heah and J. A.
Gladysz, Organometallics, 1986, 5, 1778.
10 See literature cited in ref. 11, and the following papers: C. Bolm and K.
Muñiz, Chem. Soc. Rev., 1999, 28, 51; G. Jones and C. J. Richards,
Organometallics, 2001, 20, 1251; C. Pasquier, L. Pélinski, J. Brocard,
A. Mortreux and F. Agbossou-Niedercorn, Tetrahedron Lett., 2001, 42,
2809; S. U. Son, K. H. Park, S. J. Lee, Y. K. Chung and D. A. Sweigart,
Chem. Commun., 2001, 1290; C. Bolm, M. Kesselgruber, N. Hermanns,
J. P. Hildebrand and G. Raabe, Angew. Chem., Int. Ed., 2001, 40,
1488.
11 K. Kromm, B. D. Zwick, O. Meyer, F. Hampel and J. A. Gladysz, Chem.
Eur. J., 2001, 7, 2015.
12 A. Togni, N. Bieler, U. Burckhardt, C. Köllner, G. Pioda, R. Schneider
and A. Schnyder, Pure Appl. Chem., 1999, 71, 1531.
13 See also: L. J. Alvey, O. Delacroix, C. Wallner, O. Meyer, F. Hampel,
S. Szafert, T. Lis and J. A. Gladysz, Organometallics, 2001, 20,
3087.
2
14 Complexes 1c, 2b, 3c+BF42, and 4b+BF4 have not been reported
earlier, but all preparative and spectroscopic details are analogous to the
other compounds.
15 (a) M. R. Netherton and G. C. Fu, Org. Lett., 2001, 3, 4295; (b) The P(t-
Bu)3 used in our study was generated in situ from [HP(t-Bu)3]+BF42 and
t-BuOK.
Fig. 1 Rate of consumption of phenyl bromide under the conditions of
Table 1.
Table 2 Survey of aryl bromides
16 General procedure: an oven-dried Schlenk flask was charged with the
phosphonium salt or phosphine (0.0179 mmol, 4.0 mol%) and dry
toluene (4 mL). A 1.0 M THF solution of t-BuOK (0.036 mL, 0.036
mmol) was added with stirring (for phosphonium salts only; rhenium
systems turn from yellow to orange-red). After 5 min, a 0.0045 M
toluene solution of Pd(OAc)2 (1.0 mL, 0.0045 mmol, 1 mol%),
phenylboronic acid (0.082 g, 0.67 mmol, 1.5 equiv.), K3PO4 (0.190 g,
0.897 mmol, 2.0 equiv.), an internal standard [0.204–0.205 mmol of
tridecane (0.050 mL), hexadecane (0.060 mL), or eicosane (0.058 g)],
and the aryl halide (0.448 mmol, 1.0 equiv.) were added. The suspension
was stirred (80 or 100 °C) and monitored by GC. The product was
identified by comparison of its GC retention time to that of a commercial
sample.
Conversion Yield
(ArBr/%) (ArPh%) Time/h
Entry ArBr
Ligand
1
2
1a
1b
100
100
86
78
0.25
0.25
3
4
1a
1b
100
100
100
100
4
1
5
6
1a
1b
100
100
88
88
4
17 D. D. Perrin, Ionisation Constants of Inorganic Acids and Bases in
Aqueous Solution, Pergamon, New York, 2nd edn., 1982.
18 Enantioselective syntheses of chiral biaryls via the Suzuki reaction: A.
N. Cammidge and K. V. L. Crépy, Chem. Commun., 2000, 1723; J. Yin
and S. L. Buchwald, J. Am. Chem. Soc., 2000, 122, 12 051.
0.25
7
8
1a
1b
100
100
100
100
0.25
0.5
CHEM. COMMUN., 2002, 1046–1047
1047