ORGANIC
LETTERS
2012
Vol. 14, No. 1
58–61
The Prins Reaction Using Ketones:
Rationalization and Application toward the
Synthesis of the Portentol Skeleton
Maiwenn Jacolot,† Mickael Jean,† Nicolas Levoin,‡ and Pierre van de Weghe*,†
ꢀ
Universite de Rennes 1, UMR 6226, Sciences Chimiques de Rennes, Equipe PNSCM,
UFR des Sciences Biologiques et Pharmaceutiques, 2 avenue du Prof Leon Bernard,
ꢀ
F-35043 Rennes Cedex, France, and Bioprojet-Biotech, 4 rue du Chesnay Beauregard,
ꢀ
BP96205, F-35762 Saint-Gregoire, France
Received October 20, 2011
ABSTRACT
We report a TMSI-promoted Prins cyclization reaction with ketones as carbonyl partners to prepare polysubstituted chiral spirotetrahydropyrans.
In the presence of racemic 2-methylcyclohexanone a dynamic kinetic resolution occurred affording one stereoisomer. The observed
enantiospecificity has been rationalized by DFT calculation.
Lichens are among the most fascinating organisms,
characterized by a symbiotic association between a fungus
and a green algae or a cyanobacterium producing many
biologically active metabolites. Recent studies have re-
ported that many lichens contain a stable consortium of
other microorganisms on the surface offering a wide mol-
ecular diversity.1 Among the numerous lichenic deriva-
tives, portentol 1 (Figure 1), a polypropionate isolated
from Roccella portentosa, possesses a fascinating structure
for which no synthesis (or synthetic approach) has been re-
ported to date.2 Despite the numerous major achievements
in total synthesis that have been reported over the past
half-century,3 the portentol structure presents a unique
challenge.
Retrosynthetic simplification of 1 can, in principle, be
rather straightforward and, in our hands, yielded the
spiroether 2 as a model substrate. Prins cyclization4 invol-
ving analkene appeared heretobethe method of choicefor
preparing a polyfunctionalized tetrahydropyran of this
sort, but despite significant advances in the Prins reaction
field,4 only a few examples that combine homoallylic alco-
hols and ketones are reported in the literature.5 Based on
this statement, we were intrigued by the possibility of con-
structingthe portentol spirotetrahydropyran skeleton via a
Prins cyclization. Thus polysubstituted chiral homoallylic
alcohol 3 and cyclohexanone 4, in the presence of a catalyst
or promoter, could potentially undergo a Prins cyclization
reaction to give 2 (Figure 1).
†
ꢀ
Universite de Rennes 1.
‡ Bioprojet-Biotech.
(1) (a) Boustie, J.; Grube, M. Plant Genetic Resources 2003, 3, 273–
287. (b) Podterob, A. P. Pharm. Chem. J. 2008, 42, 582–588. (c) Grube,
M.; Berg, G. Fung. Biol. Rev. 2009, 23, 72–85.
(2) (a) Aberhart, D. J.; Overton, K. H. Chem. Commun. 1969, 162–
163. (b) Aberhart, D. J.; Overton, K. H. Chem. Commun. 1970, 664–665.
(c) Aberhart, D. J.; Overton, K. H.; Huneck, C. J. Chem. Soc. (C) 1970,
1612–1623. (d) Ferguson, G.; Mackray, I. R. Chem. Commun. 1970, 665–
666. (e) Quilhot, W.; Garbarino, J. A.; Gambaro, V. J. Nat. Prod. 1983,
46, 594–595. (f) Pettit, G. R.; Zhang, Q.; Pinilla, V.; Herald, D. L.;
Doubek, D. L.; Duke, J. A. J. Nat. Prod. 2004, 67, 983–985.
(3) (a) Nicolaou, K. C.; Sorensen, E. Classics in Total Synthesis;
Wiley-VCH: 1996. (b) Nicolaou, K. C.; Snyder, S. A. Classics in Total
Synthesis II; Wiley-VCH: 2003. (c) Nicolaou, K. C.; Chen, J. S. Classics in
Total Synthesis III; Wiley-VCH: 2011.
(4) For a recent review, see: Olier, C.; Kaafarani, M.; Gastaldi, S.;
Bertrand, M. P. Tetrahedron 2010, 66, 413–445.
(5) For significant examples, see: (a) Nishizawa, M.; Shigarahi, T.;
Takao, H.; Imagawa, H.; Sugihara, T. Tetrahedron Lett. 1999, 40, 1153–
1156. (b) Sabitha, G.; Reddy, K. B.; Bhikshapathi, M.; Yadav, J. S.
Tetrahedron Lett. 2006, 47, 2807–2810. (c) Yadav, J. S.; Reddy, B. V. S.;
Krishna, V. H.; Swamy, T.; Kumar, G. G. K. S. N. Can. J. Chem. 2007,
85, 412–417. (d) Castaldi, M. P.; Troast, D. M.; Porco, J. A., Jr. Org.
Lett. 2009, 11, 3362–3365.
r
10.1021/ol202829u
Published on Web 11/30/2011
2011 American Chemical Society