pubs.acs.org/joc
asymmetric variants of the venerable Simmons-Smith5
Stereocontrolled Synthesis of trans-Cyclopropyl
Sulfones from Terminal Epoxides
and Corey-Chaykovsky reactions,6 though more recently,
there has been an ever-increasing number of organocatalytic
methods developed.7 In spite of these advances, wasteful
resolution processes remain popular in an industrial setting.8
It is evident therefore, that methods to access cyclopropanes
in a stereocontrolled manner, particularly via conceptually
different approaches, are still of significant interest.
Christopher D. Bray* and Giorgio de Faveri
Queen Mary University of London, School of Biological and
Chemical Sciences, Mile End Road, London E1 4NS, U.K.
In 1961, Wadsworth and Emmons reported the direct
conversion of epoxides to cyclopropanes.9 Though poten-
tially very powerful, this method has not found widespread
appeal, and at present, this process is limited to the formation
of cyclopropyl esters using phosphonate esters,10 e.g., 1a, and
to spirocyclic cyclopropyl ketones using keto-stabilized
phosphonates.11-13 In the case of the former examples, the
reaction pathway involves ring-opening of epoxide 2 with
anion 1b (Scheme 1, step 1) followed by transfer of diethyl
phosphite to the newly formed alkoxide of 3 (step 2) and
finally stereospecific intramolecular ring-closure of the sub-
sequently generated R-stabilized anion 414 (step 3) to give
trans-cyclopropyl ester 5. In the synthesis of cyclopropyl
esters, high trans-selectivity is observed. It has been proposed
that this may be the result of (a) ring closure being highly
diastereoselective, which may be due to chelation control,10a,n
or (b) rapid equilibration of a mixture of cyclopropanes to
Received April 29, 2010
Treatment of a range of (enantiopure) epoxides with
the sodium salt of diethyl (phenylsulfonyl)methylphos-
phonate in DME at 140 °C for 4 h gives a variety of
(enantiopure) trans-cyclopropyl sulfones with high dia-
stereoselectivity.
(5) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
(6) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
(7) (a) Hansen, H. M.; Longbottom, D. A.; Ley, S. V. Chem. Commun.
2006, 4838. (b) Kunz, R. K.; Macmillan, D. W. C. J. Am. Chem. Soc. 2005,
127, 3240. (c) Papageorgious, C. D.; Cubillo de Dios, M. A.; Ley, S. V.;
Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 4641. (d) Bremeyer, N.; Smith,
S. C.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 2681.
(8) For a recent example, see: Beaulieu, P. L.; Gillard, J.; Bailey, M. D.;
Boucher, C.; Duceppe, J.-S.; Simoneau, B.; Wang, X.-J.; Zhang, L.;
Grozinger, K.; Houpis, I.; Farina, V.; Heimroth, H.; Krueger, T.;
Schnaubelt, J. J. Org. Chem. 2005, 70, 5869.
The cyclopropane moiety is ubiquitous in Nature, being
found in numerous amino acids, fatty acids, polyketides, and
terpenes.1 Cyclopropanes are also regularly utilized in medi-
cinal chemistry, including in peptidomimetic approaches,
since they provide the capability to arrange pendant groups
in specific and rigid three-dimensional orientations.2 In
addition, reactions involving metal-catalyzed ring-opening
of cyclopropanes with subsequent cyclopentannulation are
becoming ever more common.3 Methods for the stereo-
controlled synthesis of cyclopropanes are thus of vital
importance, and a great deal of effort has been put into
the development of a multitude of catalytic asymmetric
processes that target them.4 The basis of such reactions lies
predominantly in metal-catalyzed (e.g., Rh or Cu) diazo
decomposition/carbene insertion into alkenes along with
(9) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
(10) Examples of Wadsworth-Emmons cyclopropanation in synthesis
^
are as follows: (a) Delhaye, L.; Merschaert, A.; Delbeke, P.; Brione, W. Org.
Process Res. Dev. 2007, 11, 689. (b) Armstrong, A.; Scutt, J. N. Chem.
Commun. 2004, 510. (c) Armstrong, A.; Scutt, J. N. Org. Lett. 2003, 5, 2331.
(d) Singh, A. K.; Rao, M. N.; Simpson, J. H.; Li, W. S.; Thornton, J. E.;
Kuehner, D. E.; Kacsur, D. J. Org. Process Res. Dev. 2002, 6, 618. (e) Petter,
R. C.; Banerjee, S.; Englard, S. J. Org. Chem. 1990, 55, 3088. (f) Petter, R. C.
Tetrahedron Lett. 1989, 30, 399. (g) Fitzsimmons, B. J.; Fraser-Reid, B.
Tetrahedron 1984, 40, 1279. (h) Izydore, R. A.; Ghiradelli, R. G. J. Org.
€
€ €
Chem. 1973, 38, 1790. (i) Tomoskozi, I. Tetrahedron 1966, 22, 179. For the
analogous, but less facile, use of phosphoranylidenes, see: (j) Denney, D. B.;
Vill, J. J.; Boskin, M. J. J. Am. Chem. Soc. 1962, 84, 3944. For related
approaches, see: (k) Clarke, C.; Fox, D. J.; Pedersen, D. S.; Warren, S. Org.
Biomol. Chem. 2009, 7, 1329. (l) Clarke, C.; Foussat, S.; Fox, D. J.; Pedersen,
D. S.; Warren, S. Org. Biomol. Chem. 2009, 7, 1323. (m) Krawczyk, H.;
Wa-sek, K.; Ke-dzia, J. Synthesis 2009, 1473–1476. (n) Krawczyk, H.; Wa-sek,
K.; Ke-dzia, J.; Wojciechowski, J.; Wolf, W. M. Org. Biomol. Chem. 2008, 6,
308–318. (o) Fox, D. J.; Parris, S.; Pedersen, D. J.; Tyzack, C. R.; Warren, S.
Org. Biomol. Chem. 2006, 4, 3108. (p) Boesen, T.; Fox, D. J.; Galloway, W.;
Pedersen, D. S.; Tyzack, C. R.; Warren, S. Org. Biomol. Chem. 2005, 3,
630–637.
(11) Jacks, T. E.; Nibbe, H.; Wiemer, D. F. J. Org. Chem. 1993, 58, 4584.
(12) Wadsworth and Emmons have reported an isolated example of the
use of the diethyl cyanomethylphosphonate for the conversion of styrene
oxide to the corresponding cyanocyclopropane (51% yield); see ref 9.
(13) Katritzky et al. have reported three examples of an analogous
cyclopropanation using 1-(benzotriazol-1-yl)diphenylphosphine oxide; see:
Katrizky, A. R.; Wu, H.; Xie, L.; Jiang, J. J. Heterocycl. Chem. 1995, 32, 595.
(14) An example of the protonated intermediate 4 has been detected by
LC/MS; see ref 10d.
(1) For respective representative examples, see: (a) Parry, R. J.; Mafoti,
R. J. Am. Chem. Soc. 1986, 108, 4681. (b) MacMillan, J. B.; Molinski, T. F.
J. Nat. Prod. 2005, 68, 604. (c) Ringel, S. M.; Greenough, R. C.; Roemer, S.;
Connor, D.; Gutt, A. L.; Blair, B.; Kanter, G.; von Strandtmann, M.
J. Antibiot. 1977, 30, 371. (d) Zheng, G. C.; Ichikawa, A.; Ishitsuka,
M. O.; Kusumi, T.; Yamamoto, H.; Kakisawa, H. J. Org. Chem. 1990, 55,
3677.
(2) Cyclopropane-containing drugs accounted for >$7 billion in sales in
2006. For a review of recent peptidomimetic approaches, see: Youla, S. T.
Acc. Chem. Res. 2008, 41, 1252.
(3) (a) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051.
(b) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
(4) (a) Goudreau, S. R.; Charette, A. B. Angew. Chem., Int. Ed. 2010, 49,
486. (b) Pellissier, H. Tetrahedron 2008, 64, 7041. (c) McGarrigle, E. M.;
Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev.
2007, 107, 5841. (d) Maas, G. Chem. Soc. Rev. 2004, 33, 183. (e) Lebel, H.;
Marcoux, J. F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977.
(f) Comprehensive Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH
Inc.: New York, 2000; p 864. (g) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998,
98, 911.
4652 J. Org. Chem. 2010, 75, 4652–4655
Published on Web 06/10/2010
DOI: 10.1021/jo100844g
r
2010 American Chemical Society