The Journal of Organic Chemistry
Article
reaction center through TS3 rather than by increasing the
nucleofugality of the leaving group through TS4. (3) The
concerted mechanism is further supported by the fact that the
ΔH‡ values for the reactions with the dissociated EtO− and ion-
paired EtOK are linearly dependent on the electronic nature of
the substituent Y. (4) The reactions with the ion-paired EtOK
result in more negative ΔS‡ values than those with the
dissociated EtO−. Restrictions of the rotational and vibrational
degrees of freedom in the cyclic TS3 are responsible for the
more negative ΔS‡ values. (5) The ΔS‡ value is strongly
dependent on the electronic nature of the substituent Y for the
reactions with the dissociated EtO− but remains nearly constant
for the reactions with the ion-paired EtOK. The difference in
structures between TS2 and TS3 is responsible for the
contrasting ΔS‡ behaviors.
S23). This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2012-R1A1B3001637), and by NSERC of Canada
(E.B.). Ji-Sun Kang is also grateful for the BK 21 Scholarship as
well as the scholarship provided by the Lotte Foundation.
EXPERIMENTAL SECTION
■
Materials. Compounds 4a−f were prepared readily from the
reaction of 2,4-dinitrophenol and X-substituted benzenesulfonyl
chloride in the presence of triethylamine in anhydrous ether, while
5a−k were synthesized from the reaction of benzenesulfonyl chloride
with the respective Y-substituted phenol, as reported previously.18 The
crude products were purified by column chromatography, and their
REFERENCES
■
(1) (a) Mohamed, M. F.; Sanchez-Lombardo, I.; Neverov, A. A.;
Brown., R. S. Org. Biomol. Chem. 2012, 10, 631−639. (b) Barrera, I. F.;
Maxwell, C. I.; Neverov, A. A.; Brown, R. S. J. Org. Chem. 2012, 77,
4156−4160. (c) Raycroft, M. A. R.; Liu, C. T.; Brown, R. S. Inorg.
Chem. 2012, 51, 3846−3854. (d) Brown, R. S. Prog. Inorg. Chem. 2012,
57, 55−117. (e) Dhar, B. B.; Edwards, D. R.; Brown, R. S. Inorg. Chem.
2011, 50, 3071−3077. (f) Edwards, D. R.; Neverov, A. A.; Brown, R. S
Inorg. Chem. 2011, 50, 1786−1797. (g) Brown, R. S.; Lu, Z. L.; Liu, C.
T.; Tsang, W. Y.; Edwards, D. R.; Neverov., A. A. J. Phys. Org. Chem.
2010, 23, 1−15. (h) Mohamed, M. F.; Neverov, A. A.; Brown., R. S.
Inorg. Chem. 2009, 48, 11425−11433. (i) Brown, R. S.; Neverov, A. A.
Adv. Phys. Org. Chem. 2007, 42, 271−331.
1
purity was checked by their melting points and H NMR spectra.
EtOK stock solution was prepared by dissolving potassium metal in
anhydrous ethanol under N2 and stored in a refrigerator. The
concentration of EtOK was measured by titration with monopotas-
sium phthalate. The anhydrous ethanol was further dried over
magnesium and distilled under N2 just before use.
Kinetics. Kinetic studies were performed with a UV−vis
spectrophotometer for slow reactions (t1/2 ≥ 10 s) or with a
stopped-flow spectrophotometer for fast reactions (t1/2 < 10 s)
equipped with a constant-temperature circulating bath. The reactions
were followed by monitoring the appearance of the Y-substituted
phenoxide ion. Reactions were followed generally for 9 half-lives, and
kobsd were calculated using the equation ln (A∞ − At) vs t. The plots of
ln (A∞ − At) vs t were linear over 90% of the total reaction.
Typically, the reaction was initiated by adding 5 μL of a 0.02 M
solution of 2,4-dinitrophenyl benzenesulfonate in acetonitrile to a 10
mm quartz UV cell containing 2.50 mL of the thermostatted reaction
mixture made of the solvent EtOH and an aliquot of the EtOK stock
solution. All solutions were transferred by gastight syringes. Generally,
the EtOK concentration was varied over the range (2−100) × 10−3 M,
while the substrate concentration was ca. 4 × 10−5 M.
(2) (a) Feng, G.; Tanifum, E. A.; Adams, H.; Hengge, A. C. J. Am.
Chem. Soc. 2009, 131, 12771−12779. (b) Humphry, T.; Iyer, S.;
Iranzo, O.; Morrow, J. R.; Richard, J. P.; Paneth, P.; Hengge, A. C. J.
Am. Chem. Soc. 2008, 130, 17858−17866. (c) Zalatan, J. G.; Catrina, I.;
Mitchell, R.; Grzyska, P. K.; O’Brien, P. J.; Herschlag, D.; Hengge, A.
C. J. Am. Chem. Soc. 2007, 129, 9789−9798. (d) Davies, A. G. J. Chem.
Res. 2008, 361−375. (e) Davies, A. G. Perkin 2000, 1, 1997−2010.
(3) (a) Chei, W. S.; Ju, H.; Suh, J. Bioorg. Med. Chem. Lett. 2012, 22,
1533−1537. (b) Chei, W. S.; Ju, H.; Suh, J. J. Biol. Inorg. Chem. 2011,
16, 511−519. (c) Kim, H. M.; Jang, B.; Cheon, Y. E.; Suh, M. P.; Suh,
J. J. Biol. Inorg. Chem. 2009, 14, 151−157. (d) Chei, W. S.; Suh, J. Prog.
Inorg. Chem. 2007, 55, 79−142. (e) Jeung, C. S.; Song, J. B.; Kim, Y.
H.; Suh, J. Bioorg. Med. Chem. Lett. 2001, 11, 3061−3064. (f) Suh, J.;
Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872−4877. (g) Suh, J.;
Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889−1892.
(h) Suh, J. Acc. Chem. Res. 1992, 25, 273−279.
(4) (a) Lee, J. H.; Park, J.; Lah, M. S.; Chin, J.; Hong, J. I. Org. Lett.
2007, 9, 3729−3731. (b) Livieri, M.; Manicin, F.; Saielli, G.; Chin, J.;
Tonellato, U. Chem.Eur. J. 2007, 13, 2246−2256. (c) Livieri, M.;
Mancin, F.; Tonellato, U.; Chin, J. Chem. Commun. 2004, 2862−2863.
(d) Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res.
1999, 32, 485−493.
(5) (a) Nielsen, L. P. C.; Zuend, S. J.; Ford, D. D.; Jacobsen, E. N. J.
Org. Chem. 2012, 77, 2486−2495. (b) Fife, T. H.; Chauffe, L. Bioorg.
Chem. 2000, 28, 357−373. (c) Fife, T. H.; Bembi, R. J. Am. Chem. Soc.
1993, 115, 11358−11363. (d) Fife, T. H.; Pujari, M. P. J. Am. Chem.
Soc. 1990, 112, 5551−5557.
Products Analysis. Y-Substituted phenoxide was liberated
quantitatively and identified as one of the products by comparison
of the UV−vis spectrum after completion of the reaction with that of
the authentic sample under the same reaction conditions.
ASSOCIATED CONTENT
■
S
* Supporting Information
−
Plot of log (kEtOK/kEtO ) vs σx for the reactions of 2,4-
dinitrophenyl X-substituted benzenesulfonates 4a−f with EtOK
−
(Figure S1); Hammett plots correlated with σY and σY°
constants for the reactions of Y-substituted phenyl benzenesul-
fonates 5b−d and 5f−k with the dissociated EtO− and ion-
−
paired EtOK (Figures S2 and S3); plots of ΔH‡ vs σY
(6) (a) Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon, J. G. J. Chem.
Soc., Chem. Commun. 1984, 162−163. (b) Dunn, E. J.; Buncel, E. Can.
J. Chem. 1989, 67, 1440−1448. (c) Pregel, M. J.; Dunn, E. J.;
Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24,
449−455.
(7) (a) Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G.
W.; Buncel, E. Can. J. Chem. 2009, 87, 433−439. (b) Buncel, E.;
Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468−1475.
(c) Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2,
601−610. (d) Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org.
constants for the reactions of 3,4-dinitrophenyl benzenesulfo-
nate 5b, 4-nitrophenyl benzenesulfonate 5c, and 4-cyanophenyl
benzenesulfonate 5f with the dissociated EtO− and ion-paired
EtOK (Figure S4); plot of ΔS‡ vs σY constants for the
−
reactions of 3,4-dinitrophenyl benzenesulfonate 5b, 4-nitro-
phenyl benzenesulfonate 5c, and 4-cyanophenyl benzenesulfo-
nate 5f with the dissociated EtO− (Figure S5); plots of kobsd vs
[EtOK] and kobsd/[EtO−]eq vs [EtO−]eq in Figures S6−S27.
The kobsd values and detailed kinetic conditions (Tables S1−
G
dx.doi.org/10.1021/jo302373y | J. Org. Chem. XXXX, XXX, XXX−XXX