ACS Sustainable Chemistry & Engineering
Research Article
chloride based deep eutectic solvents. J. Phys. Chem. B 2016, 120,
6739−6746.
(16) Stefanovic, R.; Ludwig, M.; Webber, G. B.; Atkin, R.; Page, A. J.
Nanostructure, hydrogen bonding and rheology in choline chloride
deep eutectic solvents as a function of the hydrogen bond donor. Phys.
Chem. Chem. Phys. 2017, 19, 3297−3306.
(17) Ashworth, C. R.; Matthews, R. P.; Welton, T.; Hunt, P. A.
Doubly ionic hydrogen bond interactions within the choline
chloride−urea deep eutectic solvent. Phys. Chem. Chem. Phys. 2016,
18, 18145−18160.
(18) Zahn, S.; Kirchner, B.; Mollenhauer, D. Charge spreading in
deep eutectic solvents. ChemPhysChem 2016, 17, 3354−3358.
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.:
Wallingford, CT, 2009.
(20) Boys, S. F.; Bernardi, F. The calculation of small molecular
interactions by the differences of separate total energies. Some
procedures with reduced errors. Mol. Phys. 1970, 19, 553−566.
(21) Zhu, S.; Li, H.; Zhu, W.; Jiang, W.; Wang, C.; Wu, P.; Zhang,
Q.; Li, H. Vibrational analysis and formation mechanism of typical
deep eutectic solvents: An experimental and theoretical study. J. Mol.
Graphics Modell. 2016, 68, 158−175.
and butanediol at different molar ratios of ChCl to
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (Nos. 21573060, U1704251, and
21733011), the National Key Research and Development
Program of China (No. 2017YFA0403101), the Program for
Backbone Teacher in University of Henan Province (No.
2016GGJS-049), and the 111 project (No. D17007).
(22) Wulf, A.; Fumino, K.; Ludwig, R. Spectroscopic evidence for an
enhanced anion−cation interaction from hydrogen bonding in pure
imidazolium ionic liquids. Angew. Chem., Int. Ed. 2010, 49, 449−453.
(23) Wulf, A.; Fumino, K.; Ludwig, R.; Taday, P. F. Combined THz,
FIR and Raman spectroscopy studies of imidazolium-based ionic
liquids covering the frequency range 2−300 cm−1. ChemPhysChem
2010, 11, 349−353.
REFERENCES
■
(1) Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.;
Tambyrajah, V. Novel solvent properties of choline chloride/urea
mixtures. Chem. Commun. 2003, 70−71.
(2) Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents
(DESs) and their applications. Chem. Rev. 2014, 114, 11060−11082.
(3) Hayes, R.; Warr, G. G.; Atkin, R. Structure and nanostructure in
ionic liquids. Chem. Rev. 2015, 115, 6357−6426.
(24) Fumino, K.; Wulf, A.; Ludwig, R. Hydrogen bonding in protic
ionic liquids: reminiscent of water. Angew. Chem., Int. Ed. 2009, 48,
3184−3186.
(4) Wagle, D. V.; Zhao, H.; Baker, G. A. Deep eutectic solvents:
sustainable media for nanoscale and functional materials. Acc. Chem.
Res. 2014, 47, 2299−2308.
(25) Singh, T.; Kumar, A. Aggregation behavior of ionic liquids in
aqueous solutions: effect of alkyl chain length, cations, and anions. J.
Phys. Chem. B 2007, 111, 7843−7851.
(5) Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R. L.;
Duarte, A. R. C. Natural deep eutectic solvents − solvents for the 21st
century. ACS Sustainable Chem. Eng. 2014, 2, 1063−1071.
(26) Zheng, Y. Z.; Wang, N. N.; Luo, J. J.; Zhou, Y.; Yu, Z. W.
Hydrogen-bonding interactions between [BMIM][BF4] and acetoni-
trile. Phys. Chem. Chem. Phys. 2013, 15, 18055−18064.
(27) van Osch, D. J. G. P.; Zubeir, L. F.; van den Bruinhorst, A.;
Rocha, M. A. A.; Kroon, M. C. Hydrophobic deep eutectic solvents as
water-immiscible extractants. Green Chem. 2015, 17, 4518−4521.
(28) Stefanovic, R.; Ludwig, M.; Webber, G. B.; Atkin, R.; Page, A. J.
Nanostructure, hydrogen bonding and rheology in choline chloride
deep eutectic solvents as a function of the hydrogen bond donor. Phys.
Chem. Chem. Phys. 2017, 19, 3297−3306.
́
̂
(6) Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Deep
eutectic solvents: syntheses, properties and applications. Chem. Soc.
Rev. 2012, 41, 7108−7146.
(7) Hammond, O. S.; Edler, K. J.; Bowron, D. T.; Torrente-
Murciano, L. Deep eutectic-solvothermal synthesis of nanostructured
ceria. Nat. Commun. 2017, 8, 14150.
(8) Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.;
Marrucho, I. M. Insights into the synthesis and properties of deep
eutectic solvents based on cholinium chloride and carboxylic acids.
ACS Sustainable Chem. Eng. 2014, 2, 2416−2425.
(9) Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. New natural
and renewable low transition temperature mixtures (LTTMs):
screening as solvents for lignocellulosic biomass processing. Green
Chem. 2012, 14, 2153−2157.
(10) Abbott, A. P.; Cullis, P. M.; Gibson, M. J.; Harris, R. C.; Raven,
E. Extraction of glycerol from biodiesel into a eutectic based ionic
liquid. Green Chem. 2007, 9, 868−872.
(29) Abbott, A. P.; Harris, R. C.; Ryder, K. S. Application of hole
theory to define ionic liquids by their transport properties. J. Phys.
Chem. B 2007, 111, 4910−4913.
(11) Bi, W.; Tian, M.; Row, K. H. Evaluation of alcohol-based deep
eutectic solvent in extraction and determination of flavonoids with
response surface methodology optimization. J. Chromatogr. A 2013,
1285, 22−30.
(12) Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. Low-
transition-temperature mixtures (LTTMs): a new generation of
designer solvents. Angew. Chem., Int. Ed. 2013, 52, 3074−3085.
(13) Sun, H.; Li, Y.; Wu, X.; Li, G. Theoretical study on the
structures and properties of mixtures of urea and choline chloride. J.
Mol. Model. 2013, 19, 2433−2441.
(14) Perkins, S. L.; Painter, P.; Colina, C. M. Molecular dynamic
simulations and vibrational analysis of an ionic liquid analogue. J.
Phys. Chem. B 2013, 117, 10250−10260.
(15) Wagle, D. V.; Deakyne, C. A.; Baker, G. A. Quantum chemical
insight into the interactions and thermodynamics present in choline
7767
ACS Sustainable Chem. Eng. 2019, 7, 7760−7767