S. Chandrasekhar et al. / Tetrahedron Letters 50 (2009) 3294–3295
3295
(i) TsCl, Et3N, DMAP
CH2Cl2, 0 oC - rt, 12 h
OH
N3
Pd-C/H2, EtOAc, rt, 6 h
8
TBSO
N3
TBSO
(ii) NaN3, DMF, 68 oC, 4 h
80% for two steps
then K2CO3, THF, reflux
10 h,75%
O
O
9
3
O
O
N3
p-TSA, MeOH
MsCl, Et3N, CH2Cl2,
-10 oC, 15 min, 94%
Pd-C/H2, EtOH, 10 h
HO
MsO
rt, 30 min, 81 %
then K2CO3, EtOH
reflux, 6 h, 55 %
O
O
11
10
O
O
O
N
(i) MsCl, Et3N, CH2Cl2, -10 oC, 15 min
N
(ii) NaN3, DMF, 65 oC, 36 h
(iii) LiAlH4, THF, reflux then Ac2O
NaOH (1 N) (30% for three steps)
NHAc
OH
(-)-Epiquinamide, 1a
2
Scheme 3.
2. Fitch, R. W.; Garraffo, H. M.; Spande, T. F.; Yeh, H. J. C.; Daly, J. W. J. Nat. Prod.
2003, 66, 1345.
both ADmix
lactamization.
a and ADmix b as reagents) and one-pot reduction-
3. (a) Wijdeven, M. A.; Botman, P. N. M.; Wijtmans, R.; Schoemaker, H. E.; Rutjes, F.
P. J. T.; Blaauw, R. H. Org. Lett. 2005, 7, 4005; (b) Suyama, T. L.; Gerwick, W. H.
Org. Lett. 2006, 8, 4541; (c) Huang, P.-Q.; Guo, Z.-Q.; Ruan, Y.-P. Org. Lett. 2006, 8,
1435; (d) Tong, S. T.; Barker, D. Tetrahedron Lett. 2006, 47, 5017; (e) Voituriez, A.;
Ferreira, F.; Perez-luna, A.; Chemla, F. Org. Lett. 2007, 9, 4705; (f) Wijdeven, M.
A.; Wijtmans, R.; Van den Berg, R. J. F.; Noorduin, W.; Schoemaker, H. E.; Sonke,
T.; Van Delft, F. L.; Blaauw, R. H.; Fitch, R. W.; Spande, T. F.; Daly, J. W.; Rutjes, F.
P. J. T. Org. Lett. 2008, 10, 4001.
Thus, the forward synthesis was initiated with the commercially
available 1,6-hexane-diol 5 as the starting material. The selective
monosilylation of diol 5 followed by oxidation of alcohol using
bis(acetoxy)iodobenzene (BAIB) and 2,2,6,6-tetramethylpiperidi-
nyloxy (TEMPO) afforded aldehyde 6. Aldehyde 6 was subjected to
the next crucial step to append the ethyl propiolate group (Scheme
2). The lithiated ethyl propiolate was added to aldehyde 6 at
ꢀ78 °C to yield the hydroxy ethyl propiolate 7 which is ready for
an ‘allene’-type rearrangement in the presence of PPh3. Hydroxy
ethyl propiolate 7 was thus stirred in benzene in the presence of
PPh3 to yield the (E,E)-diene ester 4 in 84% yield, this being the com-
monprecursorforthesynthesisof boththeenantiomersof thetarget
molecule. The diene ester 4 was subjected to the enantio- and regio-
4. Kanakubo, A.; Gray, D.; Innocent, N.; Wonnacott, S.; Gallagher, T. Bioorg. Med.
Chem. Lett. 2006, 16, 4648.
5. (a) Chandrasekhar, S.; Parida, B. B.; Rambabu, C. J. Org. Chem. 2008, 73, 7826; (b)
Chandrasekhar, S.; Vijaykumar, B. V. D.; Pratap, T. V. Tetrahedron: Asymmetry
2008, 19, 746; (c) Chandrasekhar, S.; Sultana, S. S.; Kiranmai, N.; Narsihmulu, Ch.
Tetrahedron Lett. 2007, 48, 2373; (d) Chandrasekhar, S.; Chandrasekhar, G.;
Vijeender, K.; Sarma, G. D. Tetrahedron: Asymmetry 2006, 17, 2864; (e)
Chandrasekhar, S.; Jagadeshwar, V.; Jaya Prakash, S. Tetrahedron Lett. 2005, 46,
3127.
6. Guo, C.; Lu, X. J. Chem. Soc., Chem. Commun. 1993, 394.
selective Sharpless asymmetric dihydroxylation using ADmix
a and
7. Xu, D.; Crispino, G.; Sharpless, K. B. J. Am. Chem. Soc. 1992, 114, . 7570.
8. Spectral data of selected compounds: (4S,5S,E)-Ethyl 9-(tert-butyldimethylsilyloxy)-
also ADmix b to yield the diols 8 and 8a in over 80% yield and 98%
enantioselectivity. One of the enantiomers, 8, has been successfully
transformed to target (ꢀ)-epiquinamide (vide infra). Thus 8 was
subjected to hydrogenation using Pd-C in EtOAc at room tempera-
ture and atmospheric pressure for 6 h. This following filtration and
evaporation was further refluxed in THF in the presence of K2CO3,
which only yielded the butyrolactone 9 in 75% yield for two steps.
The secondary hydroxyl group was transformed to the azido group
via tosylate to realize azide 3 in 80% yield (two steps). As the stage
is set for building the quinolizine framework, the silyl ether group
in 3 was transformed to mesyl ester 11 via alcohol 10 in 76% yield
(for two steps). The mesylate 11 was subjected to one-pot reduc-
tion–double cyclization involving azide reduction to amine which
underwent intramolecular cyclization displacing mesylate. Another
facile lactamization opened up the butyrolactone ring to furnish the
hydroxyl quinolizinone 2 in 55% yield. The acetamino group in 2 was
introduced following the literature procedure to realize the (ꢀ)-
epiquinamide 1a whose spectral data was in full agreement with
the literature data3c,e (Scheme 3).8
4,5-dihydroxynon-2-enoate (8): ½a D27
ꢁ
ꢀ15.8 (c 1.0, CHCl3); IR (KBr): mmax 3425,
2932, 2858, 1717, 1655, 1465, 1254 cmꢀ1
;
1H NMR (CDCl3, 200 MHz): d 6.88 (dd,
J = 15.6, 5.4 Hz, 1H), 6.10 (dd, J = 15.6, 1.5 Hz, 1H), 4.19 (q, J = 7.0 Hz, 2H), 4.12–
4.02 (m, 1H), 3.68–3.57 (m, 2H), 3.56–3.47 (m, 1H), 2.55 (d, J = 5.4 Hz, 1H), 2.40
(d, J = 3.9 Hz, 1H), 1.64–1.36 (m, 6H), 1.30 (t, J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.04 (s,
6H); 13C NMR (CDCl3, 75 MHz): d 166.4, 146.9, 122.3, 74.0, 73.9, 63.0, 60.5, 32.6,
32.4, 25.9, 21.9, 18.3, 14.1, ꢀ5.3; ESIMS: m/z 347 (M+H)+; HRMS: calcd for
C17H34O5NaSi (M+Na)+: 369.2073, found: 369.2079. (4R,5R,E)-Ethyl 9-(tert-
butyldimethylsilyloxy)-4,5-dihydroxynon-2-enoate (8a):
½
a 2D7
ꢁ
+17.0 (c 1.5,
CHCl3); IR (KBr): mmax 3430, 2931, 2858, 1718, 1656, 1466, 1254 cmꢀ1
;
1H
NMR (CDCl3, 300 MHz): d 6.88 (dd, J = 15.8, 5.2 Hz, 1H), 6.10 (dd, J = 15.8, 1.5 Hz,
1H), 4.19 (q, J = 6.7 Hz, 2H), 4.12–4.02 (m, 1H), 3.68–3.57 (m, 2H), 3.56–3.47 (m,
1H), 2.46–2.38 (m, 1H), 2.30–2.21 (m, 1H), 1.64–1.36 (m, 6H), 1.30 (t, J = 6.7 Hz,
3H), 0.89 (s, 9H), 0.04 (s, 6H); 13C NMR (CDCl3, 75 MHz): d 166.4, 146.9, 122.3,
74.0, 73.9, 63.0, 60.5, 32.6, 32.4, 25.9, 21.9, 18.3, 14.1, ꢀ5.3; ESIMS: m/z 347
(M+H)+; HRMS: calcd for C17H34O5NaSi (M+Na)+: 369.2073, found: 369.2077.
(S)-5-((S)-5-(tert-Butyldimethylsilyloxy)-1-hydroxypentyl)-dihydrofuran-2(3H)-
one (9): ½a 2D7
+15.0 (c 1.4, CHCl3); IR (KBr): mmax 3446, 2931, 2858, 1773, 1466,
ꢁ
1631, 1466, 1254 cmꢀ1; d 4.36 (td, J = 10.9, 7.0 Hz, 1H), 3.63–3.56 (m, 2H), 3.55–
3.45 (br m, 1H), 2.65–2.41 (m, 2H), 2.36 (br m, 1H), 2.27–2.04 (m, 2H), 1.61–1.45
(m, 6H), 0.87 (s, 9H), 0.02 (s, 6H); 13C NMR (CDCl3, 75 MHz): d 177.3, 83.1, 73.8,
63.1, 32.8, 32.6, 28.8, 25.9, 24.2, 22.1, 18.5, ꢀ5.2; ESIMS: m/z 325 (M+Na)+;
HRMS: calcd for C15H30O4NaSi (M+Na)+: 325.1811, found: 325.1806. (1S,9aR)-1-
Hydroxy-hexahydro-1H-quinolizin-4(6H)-one (2): ½a D27
ꢀ8.0 (c 1.0, CHCl3); IR
ꢁ
(KBr): mmax 3424, 2922, 2853, 1616, 1462 cmꢀ1 1H NMR (CDCl3, 500 MHz): d
;
In conclusion, a strategy devised to synthesize either of the
enantiomers has been developed and successfully demonstrated
for the synthesis of (ꢀ)-isomer in good yields amenable to analog-
ing and derivatization.
4.77–4.69 (m, 1H), 3.77–3.69 (m, 1H), 3.14 (ddd, J = 12.0, 4.6, 2.7 Hz, 1H), 2.57
(ddd, J = 17.5, 7.4, 5.5 Hz, 1H), 2.41 (dt, J = 12.9, 2.7 Hz, 1H), 2.34 (ddd, J = 17.5,
8.3, 5.5 Hz, 1H), 2.02–1.79 (m, 4H), 1.67 (br d, J = 12.9, 1H), 1.54–1.42 (m, 1H),
1.42–1.33 (m, 1H), 1.27–1.16 (m, 1H); 13C NMR (CDCl3, 75 MHz): d 168.4, 69.8,
63.7, 42.9, 31.6, 28.5, 27.0, 25.2, 24.4; ESIMS: m/z 170 (M+H)+; HRMS: calcd for
C9H15NO2Na (M+Na)+: 192.1000, found: 192.1002. Opposite enantiomer of
compound 2: (1R,9a S)-1-Hydroxy-hexahydro-1H-quinolizin-4(6H)-one: ½a D27
ꢁ
+7.8
Acknowledgement
(c 1.0, CHCl3); IR (KBr): m ;
max 3430, 2920, 2851, 1616, 1462 cmꢀ1 1H NMR (CDCl3,
400 MHz): d 4.77–4.69 (m, 1H), 3.77–3.69 (m, 1H), 3.16 (ddd, J = 11.7, 4.4,
2.9 Hz, 1H), 2.57 (ddd, J = 17.5, 8.0, 5.8 Hz, 1H), 2.41 (dt, J = 13.1, 2.9 Hz, 1H),
2.33 (ddd, J = 16.8, 8.0, 5.8 Hz, 1H), 2.03–1.79 (m, 4H), 1.67 (br, d, J = 13.0,
1H), 1.54–1.42 (m, 1H), 1.42–1.33 (m, 1H), 1.27–1.16 (m, 1H); 13C NMR
(CDCl3, 50 MHz): d 168.4, 69.6, 63.7, 42.9, 31.5, 28.4, 26.9, 25.2, 24.4; ESIMS:
m/z 170 (M+H)+; HRMS: calcd for C9H15NO2Na (M+Na)+: 192.1000, found:
192.1003.
B.B.P. and C.R. thank CSIR, New Delhi, for the award of research
fellowships.
References and notes
1. Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556.