1584
S. Adimurthy, G. Ramachandraiah, and P. K. Ghosh
1
2-Iodo-1-[4-methylphenyl] ethanol: H NMR (CDCl3-TMS): (d) 2.31 (3H,
s), 2.67 (1H, br s), 3.32–3.38 (2H, t, J ¼ 4.4), 4.69–4.75 (1H, q, J ¼ 4.4),
7.09–7.23 (4H, m, J ¼ 7.2). 13C NMR (CDCl3—50 MHz): (d) 15.74,
21.74, 74.40, 126.24, 128.00, 129.84, 138.56. IR, nmax (neat): 3450, 3059,
1651, 1562, 1477, 1437, 1231, 1146, 1022, 1069, 833, 779, 758, 691 cm21
.
CONCLUSION
In summary, this procedure serves as a novel and potential method for the
synthesis of iodohydrins moderate to good yields in aqueous medium. I2/
IO23 assemblies generate a reactive species, IOH, in situ upon the addition
of mineral acids to promote iodohydrin constitution. The workup procedure
is simple and convenient, and the reaction rates are comparatively faster.
Reactions were carried out at ambient conditions without the use of any
metal catalysts. The advantage of the present procedure is the broad avail-
ability of the reagents.
REFERENCES
1. (a) Larock, R. C. Comprehensive Organic Transformations; VCH: New York, 1989,
pp. 325–327; (b) March, J. Advanced Organic Chemistry 4th ed.; John Wiley &
Sons: New York, 1992, pp. 814–815; (c) Carey, F.; Sundberg, R. Advanced
Organic Chemistry, Part B. 2nd edn.; Plenum Press: New York, 1984; pp. 150–153.
2. (a) Cornforth, J. W.; Green, D. T. Iodohydrins and epoxides from olefins. J. Chem.
Soc. C 1970, 846–849; (b) Guss, C. O.; Rosanthal, R. Bromohydrins from olefins
and N-bromosuccinimide in water. J. Am. Chem. Soc. 1955, 77, 2549;
(c) House, H. O. The acid-catalyzed rearrangement of the stilbene oxides.
J. Am. Chem. Soc. 1955, 77, 3070–3075; (d) Dalton, D. R.; Dutta, V. P.;
Jones, D. G. Bromohydrin formation in dimethyl sulfoxide. J. Am. Chem. Soc.
1968, 90, 5498–5501; (e) Sisti, A. J. Ring enlargement procedure, IV: Decompo-
sition of the magnesium salts of various 1-(1-bromethyl)-1-cycloalkanols. J. Org.
Chem. 1970, 35, 2670–2673; (f) Dalton, D. R.; Dutta, V. P. Bromohydrin
formation in aqueous dimethylsulphoxide: Electronic and steric effects. J. Chem.
Soc. B 1971, 85–89; (h) Dubey, S. K.; Kumar, S. Synthesis of dihydro diols and
diol epoxides of benzo[f]quinoline. J. Org. Chem. 1986, 51, 3407–3412;
(g) LeTourneau, M. E.; Peet, N. P. Functionalized pyrazoles from indazol-4-ols.
J. Org. Chem. 1987, 52, 4384–4387.
3. (a) Parker, R. E.; Isaacs, N. S. Mechanisms of epoxide reactions. Chem. Rev. 1959,
59, 737–799; (b) Bonini, C.; Righi, G. Regio- and chemoselective synthesis of
halohydrins by cleavage of oxiranes with metal halides. Synthesis 1994,
225–238; (c) Reddy, M. A.; Surendra, K.; Bhanumathi, N.; Ramarao, K. Highly
facile biomimetic regioselective ring opening of epoxides to halohydrins in the
presence of b-cyclodextrin. Tetrahedron 2002, 58, 6003–6008; (d) Sharghi, H.;
Niknam, K.; Pooyan, M. The halogen-mediated opening of epoxides in the
presence of pyridine-containing macrocycles. Tetrahedron 2001, 57,